
 

 

 الجمهورية الجزائرية الديمقراطية الشعبية

 وزارة التعليم العالي والبحث العلمي
 

 

  
 

 

 

 

A Dissertation Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the 

Requirements for the Master Degree in Mechanical Manufacturing and Production 
 

 

  
    Submitted by                                                                                                     Supervised by 

     Khammar Nouara Nour El Houda                                                                 Pr. Rabia Khelif  

 

Board of Examiners  

Badji Mokhtar-Annaba University Professor Pr. Chaoui Kamel 

Badji Mokhtar-Annaba University Professor Pr. Rabia Khelif  

Badji Mokhtar-Annaba University MCA Dr. Nehal Abdelaziz 

 

 

 

 

 

Academic Year: 2021/2022 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  
 

Optimization of FDM printer Parameters using Desirability 

function and their influence on the mechanical properties of 

PLA printed specimens 

                                                     

BADJI MOKHTAR ANNABA-UNIVERSITY 

Faculty of the Technology 

Department of Mechanical Engineering 
 

 عنابة –جامعة باجي مختار 
 التكنولوجيا كلية
 الهندسة الميكانيكية قسم

 

Domain: Science and Technology 

Branch: Mechanical Engineering 

Major: Mechanical Manufacturing and Production  

 

 



 1 

Summary 
It is well known that the manufacturing process has a direct influence on the mechanical 

properties of elaborated material such as strength resistance, fatigue life, corrosion resistance, 
stiffness among others. 

In this study, the influence of 3d printing parameters: infill density, nozzle temperature, 
printer speed, layer height has been investigated in order to analyze their impacts on young 
modulus and yield strength of PLA material. The mechanical properties have been obtained from 
tensile test according to ASTM D-638. A central composite design was used to perform the 
experimentation. Furthermore, a model of prediction for young modulus and yield strength was 
established based on experimental data using regression model and MANFIS model. Using the 
obtained regression function model, a multi-objective optimization has been applied through the 
desirability function method. 

Keywords:  
Additive Manufacturing, 3D Printing, Fused Filament Fabrication, Mechanical Behavior, 

Young Modulus, Yield Stress, Central Composite Design, Desirability Function, MANFIS. 
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Résumé: 
Il est bien connu que le processus de fabrication a une influence directe sur les propriétés 

mécaniques du matériau élaboré telles que la résistance, la durée de vie en fatigue, la résistance à 
la corrosion, la rigidité, entre autres. 

Dans cette étude, l'influence des paramètres d'impression 3D : densité de remplissage, 
température de la buse, vitesse de l'imprimante, hauteur de la couche a été étudiée afin d'analyser 
leur impact sur le module de Young et la limite d'élasticité du matériau PLA. Les propriétés 
mécaniques ont été obtenues à partir d'essais de traction selon la norme ASTM D-638. Un plan 
composite central a été utilisé pour réaliser l'expérimentation. En outre, un modèle de prédiction 
du module de Young et de la limite d'élasticité a été établi sur la base des données expérimentales 
en utilisant un modèle de régression et un modèle MANFIS. En utilisant le modèle de régression 
obtenu, une optimisation multi-objective a été appliquée par la méthode de la fonction de 
désirabilité. 

Mots-clés :  

Fabrication additive, impression 3D, fabrication par filament fondu, comportement mécanique, 
module d'Young, limite d'élasticité, conception composite centrale, fonction de désirabilité, 
MANFIS. 
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 ملخص
كما تم فحص كثافة التعبئة، ودرجة حرارة الفوھات، وسرعة الطابعة،  :في ھذه الدراسة تأثیر معاملات الطباعة الثلاثیة الأبعاد

  البولیلاكتیك حمض وارتفاع الطبقة من أجل تحلیل تأثیراتھا على المودیلات الشابة وزیادة قوة المادة

 وقد أستخدم تصمیم مركب ,638أ س ت م د  .وقد تم الحصول على الخصائص المیكانیكیة من إختبار الشد وفقا للطراز
 .مركزي لإجراء التجربة

استنادا إلى بیانات تجریبیة باستخدام نموذج الانحدار ونموذج  وقوام إجھاد وعلاوة على ذلك، وضع نموذج للتنبؤ بمعامل یونغ
 .نظام مانفیس

 وباستخدام نموذج دالة التراجع الذي تم الحصول علیھ، تم تطبیق تحسین متعدد الأھداف من خلال أسلوب دالة الرغبة

 الأساسیة الكلمات

 تصمیم الناتج، إجھاد شاب، معامل میكانیكي، سلوك منصھرة، خیوط تصنیع الأبعاد، ثلاثیة طباعة مضاف، تصنیع
 .مانفیس مرغوبة، وظیفة مركزي، مركب
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State of Art: 

This part defines the FFF technology through the specification of variable production 
factors that contribute to the process, the mechanical qualities that are the focus of this dissertation, 
and the great bulk of the evaluated bibliography. 

I. FFF's relevant configurable settings: 
The most well-known and recognized FFF method is 3D printing using thermoplastic and 

elastomeric materials extrusion. To build functional parts, it is necessary to understand how 
different parameters affect the mentioned properties, which are quite varied and can affect the final 
characteristics of the samples in various ways, such as part quality, mechanical behavior, 
geometrical details, surface texture, and cost. As a result, it is critical to understand which of these 
factors are crucial in order to carefully determine their values. 

The subsections that follow outline the most important parameters studied in this 
dissertation. 

1. Orientation:  
The manufacturing direction, also known as build orientation, is one of the most critical 

elements that can affect load transmission between filaments and interfaces. The usefulness of this 
parameter in terms of the laying direction of extruded filaments may vary depending on the 
mechanical test and subsequent load application. Tensile testing, in which the traction force 
attempts to break the filaments in the 0X orientation or split the layers in the 0Y direction, is one 
mechanical test that can detect this efficacy. The finished surface and print time can also be 
affected by orientation. 

 

Several studies have lately been done to investigate the impact of this characteristic on the 
strength of produced components. According to [10], Results demonstrated that shear modulus 
and shear strength for 45° flat orientation was about 1.55 GPa and 36 MPa, whereas for upright 
specimens they were about 0.95 GPa and 18MPa showing weaker strength than the 45° flat 
orientation. 

 This study [11] results showed that the build orientation and layer thickness were the two 
most crucial aspects determining dimensional accuracy, which was conditioned by the length of 
the movement of the extruder, and the accumulation of layers. 

2. Layer height:  
The height of the extruded filaments, also known as layer height, determines the height 

along the vertical axis measured before extruding a new layer on top of the preceding one, the 
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connection between the extruded wires could be affected by the height of the layers, and this could 
influence the mechanical properties of the printed parts.  

The influence of liquefier temperature, print speed, layer height, and platform temperature 
on the temperature development and mechanical behavior of PA6 reinforced with chopped carbon 
fibers generated by FFF is discussed in this study [12]. The preliminary findings indicated that 
there are variances in crystallinity percentages, and failure stress/strain may be used to evaluate 
the mechanical qualities of FFF-made goods. Furthermore, evaluating the temperature profile of 
the deposited filaments indicated that process factors have a significant impact on the cooling 
process of deposited filaments, which influences the bonding of nearby filaments. The slower 
cooling rate was caused by the higher temperatures. 

The current paper investigates the effect of geometrical parameters (Nozzle Diameter, 
Layer Thickness, and Printing Speed) of the FFF 3D printing process on printed part strength using 
PLA, with the results revealing a significant influence of geometric process parameters on the 
sample mesostructured, and thus on sample strength [13]. Over the entire range of layer height 
values evaluated, layer height had the largest effect on intra-layer cohesiveness, with part strength 
decreasing as layer height increased for all nozzles studied. The reduction in strength while shifting 
layer height from minimum to maximum was approximately 3.5 times for the samples under 
consideration. 

3. Nozzle diameter: 
In important efforts, the diameter of the nozzle defines the diameter of the extruded wire, 

and its efficacy on mechanical qualities and surface roughness is explored. The layer height may 
be changed as a critical printing parameter to minimize the size of voids; the lower the layer height, 
the smaller the void size. The trade-off is that by lowering the layer height, printing time rises. 
When the layer height is smaller than the nozzle diameter, the raster's cross-section deforms to a 
rectangular shape with round corners. The impact of this setting on printing velocity can also vary.  

 

Shahriar Bakrani Balani [14] sought to optimize the printing conditions of the FFF process 
based on trustworthy qualities such as printing parameters and polymer physical properties, with 
findings indicating a fluctuation in shear rate depending on nozzle diameter and intake velocity. 
At high intake velocities and smaller diameters, the shear rate reached its maximum near the 
interior wall. 

 

The suggested study [15] lays out the primary faults generated by a variety of printing 
factors that may affect layer slicing, hence impacting the defect rate. For the first point, all extruded 
material must be confined behind the nozzle; otherwise, faults on the print surface may arise. As 
a result of choosing to maintain the width constant and equal to the nozzle diameter, additional 
defect reduction is achievable through the implementation of the suggested optimization approach, 
which would allow for the collection of the right value of printing settings. 
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4. Infill density:  
This parameter specifies the distance between the lines of the interior filling and, as a result, 

the solidity percentage of the piece's interior. The proportions of this parameter can have a 
considerable impact on the mechanical characteristics of the components depending on the internal 
fullness of the parts, and the quantity of this percentage is crucial in increasing/decreasing overall 
material consumption and prices.  

 

The purpose of this experimental study [16] is to investigate the effect of infill density on 
the tensile mechanical parameters "tensile strength and elastic modulus" of PLA. tPLA material 
demonstrated the highest tensile strength for all infill densities when only specimens with infill 
structure were examined (20 %, 60 % and 80%). When the elastic modulus is measured, cPLA has 
the greatest value for infill density of 80%, cPLA and tPLA materials have the same value for infill 
density of 60%, and cPLA and tPLA materials have the same value for infill density of 20%. 

 

While [17], the paper examines the performance of FFF-built components, revealing the 
relationship between printing orientation and structural performance. Furthermore, the mechanical 
behavior of the exterior contour and the interior structure (in-fills or lattice). When it was 
demonstrated that the mechanical behavior of aligned-type and crossed-type samples is 
transversely isotropic the isotropic plane changes depending on the printing design. The crossed-
type samples are transversely isotropic, with XZ being the isotropic plane and stiffness being lower 
in the Y direction. Transverse isotropy is also found in mixed-type and aligned-type samples. 
However, YZ is the isotropic plane, thus the stiffness in the X direction is lower. 

5. Infill pattern:  
The infill pattern allows you to fill the inside of the samples with various geometrical forms 

such as (rectilinear, honeycomb, Hilbert curve, triangular, etc.). The impact of the various infill 
patterns on the raster angle and load direction might be significant, hence it has been carefully 
considered in the current study.  

This work [18] investigates the effects of infill patterns on the mechanical response of 
PLA-printed parts. The mechanical responses of parts printed with different infill patterns 
’’Rectilinear, Honeycomb, Triangle, and Grid patterns" were tested on impact resistance and 
tensile strength. Considering mechanical response from both tensile and impact tests along with 
printed mass, the Honeycomb pattern was considered the toughest. 

 

The effect of infill type and density on tensile characteristics, 3D printing time, and volume 
of 3D printed material was examined and published in this paper [19]. A total of 13 distinct forms 
of infill were examined, and for each type, 9 specimens with varied infill density were tested, 
ranging from 10% to 90%. The ultimate tensile strength and yield strength also rose for each type 
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of infill pattern. The "Concentric" infill pattern likewise provided the best ultimate tensile strength 
and yield strength, according to the results. 

6. Printing velocity:  

The printing velocity specifies the linear speed at which the extruder head moves across 
the build platform's XY plane. While varying printing speeds can affect the width or diameter of 
the extruded wire, it's worth considering how it affects the mechanical qualities of the printed 
pieces.  

 

In [20], the goal of the study was to see how different printing parameters (five different 
printing regimes, varying layer height, number of outline perimeters, infill density, and sample 
humidity) affected the mechanical properties of printed PLA and PLA-X samples, "five samples 
each" and mechanical testing on a standard tensile testing machine. The elastic modulus values of 
PLA and PLA-X materials did not differ significantly.  

 

The mechanical characteristics of 3D printed PLA lattice structures were investigated using 
digital image correlation (DIC) in [21]. The experimental results reveal that when the printing 
temperature increases, the tensile strength and elastic modulus rise first, then drop. While the yield 
strength, plastic platform stress, and densification strain of lattice structures are all decreasing, the 
yield strength, plastic platform stress, and densification strain are all increasing. The tensile 
strength and elastic modulus soar as the printing speed increases. 

II. Mechanical properties and materials: 

One of the most important concerns for engineers to consider when designing a building is 
selecting the material based on an appropriate set of mechanical characteristics. These 
characteristics might be measured using approved measurement standards that specify material 
behavior owing to load resistance.  

One of the well-known phenomena requiring integrated geometric and material nonlinear 
analysis of solids is large strain plasticity, which has been reported in numerous materials. 
Materials begin to fail due to plastic deformation (non-linear stress vs. strain) or brittle fracture as 
stress increases. One method for quantifying failure behavior is to calculate yield strength, ultimate 
strength, and impact strength. Each of them can be characterized in terms of the loading mode: 
tension, compression, flexure, shear, or torsion [22]. 

Furthermore, polymers are crucial for AM since they have the largest market penetration 
and user accessibility. Polymeric materials have grown in popularity in engineering applications. 
As a consequence of continual fiber/matrix improvement and the development of revolutionary 
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fabrication processes, advanced polymeric composites provide opportunities for large leaps in 
design, production, energy saving, product usefulness, and variety. 

Many of these materials have been hardened to increase impact and fracture resistance, 
however, it is unclear if AM fully exploits these advantages. These materials are mostly used for 
developing ideas and producing low-performance parts, although there is an increasing demand 
for novel high-performance polymer materials and composites [1-9]. 

The following table summarize the research that has been done to investigate the effect of 
3D printing on mechanical properties:   

Table 1. Table summarizing the different research 

Study Research 
objectives/topic 

Materials, machines, 
standards Variable parameters Mechanical 

properties 

Tymrak, 
2014 
[1] 

 
 
 

Mechanical properties 
in realistic 

conditions for different 
opensource 

printers 
 

ABS, PLA, and Open-
source printers 
(Lulzbot Prusa, 

Prusa Mendel, Custom 
Most RepRap, Mendel 

RepRap), ASTM 
D638, Slic3r®, Cura®, 

Skeinforge® 

Variations of layer 
thickness and raster 

orientations 

Tensile 
strength, 
elastic 

modulus 
 

Ebel, 2014 
[2] 

 

Mechanical properties 
comparison ABS vs. 

PLA 

ABS, PLA, Felix 1.0e, 
CB-printer or uPrint 

Plus, DIN 
EN ISO 527 

Infill pattern, infill 
percentage 

Tensile 
strength 

Wittbrodt, 
2015 
[3] 

 

Colour effect on 
mechanical 
Properties 

PLA, Lultzbot TAZ, 
ASTM D638 

5 colors (white, black, 
blue, Gray, 

natural) 
 

Tensile 
strength 

Lanzotti, 
2015 
[4] 

 

Material properties of 
MakerBot 
3D printer 

 

PLA, Rep Rap Prusa I, 
ASTM D638 

Layer thickness (2 
levels), print 

orientation (2 levels), 
infill percentage (3 

levels) 

Tensile 
strength, 
elastic 

modulus 
 

Torres, 2015 
[5] 

 

Influences of process 
parameters 
on torsion 

 

PLA, MakerBot 
Replicator 2, ASTM 

E143 

Layer thickness, infill 
density, postprocessing 
heat-treatment time at 

100 °C 
(3 levels each) 

 

Shear stress 

Li, 2016 [6] 

Process parameters 
effect on 

bonding degree and 
mechanical 
properties 

PLA, MakerBot Z18, 
ASTM D638 

Individual assessment 
of layer thickness 

(7 values), deposition 
velocity (8 values), 
infill rate (6 values) 

 

Tensile 
strength 
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Torres, 2016 
[7] 

 

Mechanical properties 
optimization 

 

PLA, Replicator 2, 
ASTM D638, ASTM 

E143, ASTM 
D648 

 

Temperature, infill 
direction, infill 

percentage, layer 
thickness (2 levels for 

each) 
 

Tensile 
strength 

Liu, 2017 
[8] 

 

Process parameter effect 
on 

mechanical properties 
 

PLA, MakerBot 
Replicator 2, GB/T 

1040.2–2006, 
GB/T 9341–2008, 
GB/T 1043.1–2008 

 

Deposition orientation, 
layer thickness, 

deposition style, raster 
variation, raster 

gap (3 levels each) 
 

Tensile 
strength, 
flexural 
strength, 
impact 

strength 
 

Chacon, 
2017 
[9] 

 

Mechanical properties 
of PLA 

structures and optimal 
parameters selection 

 

PLA, Wit Box desktop 
3D printer, Cura®, 

ASTM 
D638, ASTM D790 

 

3 building orientations, 
4 layers 

thicknesses, feed rate 
(3 levels) 

 

Tensile 
strength, 
flexural 
strength 

 

H. 
Gonabadi,20

20 
[10] 

the effect of processing 
parameters on the 

mechanical 
characteristics of PLA 
produced by a 3D FFF 

printer 

PLA, (Creality Ender-
3, Shenzhen, 

China) Cura 4.0, 
Tinius Olsen Universal 

testing machine, 
ASTM D638, ASTM 

D5379 

build orientation, infill 
density and 
infill pattern 

(4 levels each) 

Tensile 
strength and 

young’s 
modulus, 
tension 

Eustaquio 
García 

Plaza,2019 
[11] 

Analysis of PLA 
Geometric Properties 

Processed by FFF 
Additive 

Manufacturing: Effects 
of Process Parameters 

and Plate-Extruder 
Precision Motion 

PLA, BQ Witbox, 
Cura, Talys urf CLI-

1000, ISO 178 

build orientation, layer 
thickness, 
feed rate 

(3 levels each) 
 
 

Dimensional 
accuracy, 
flatness 

error, and 
surface texture 

Khaled 
Benfriha, 

2021 
[12] 

Effect of process 
parameters on thermal 

and mechanical 
properties of polymer-
based composites using 

fused 
filament fabrication 

 

CF-PA6, Flash Forge 
Adventurer 3, ZEISS 
(OLYMPUS BH2), 

HITACHI 4800 SEM–
high resolutions, MA 

Q800, ISO 527-2, 
INSTRON 4301 

liquefier temperature 
and platform 
temperature 

(4levels) 
print speed, layer 

height 
(3levels) 

Temperature 
evolution, 

tensile 
strength, 

crystallinity 

Vladimir E. 
Kuznetsova, 

2018 
[13] 

Strength of PLA 
Components Fabricated 

with Fused 
Deposition Technology 

Using a Desktop 3D 
Printer as 

a Function of Geometrical 
Parameters of the Process 

PLA, Ultimaker 2, 
Tescan Vega 3 LMH 
microscope, universal 

electromechanical 
testing machine 

Nozzle Diameter, 
Layer Thickness, 
Printing Speed 

Print Strength 
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Bakrani 
Balani, 2018 

[14] 

Influence of printing 
parameters on the 

stability of 
deposited beads in fused 
filament fabrication of 

poly(lactic) acid 
 

PLA, HAAKE 
Rheomex OS, HAAKE 
PolyLab OS, HAAKE 
Melt pump OS, DSC 
Q200, ARES-LN2 

Nozzle diameter, feed 
rate, and layer height 

Shear rate and 
temperature. 

Velocity, 
viscosity 

Patrich 
Ferretti 
2021 
[15] 

Relationship between 
FDM 3D Printing 
Parameters Study: 

Parameter Optimization 
for Lower Defects 

 

PLA, E3D v6 and E3D 
volcano nozzles, 

Slic3r, Cura 

Shell Number, Layer 
Height, Nozzle 

diameter 

tensile 
strength, 

compressive 
strength 

Adi Pandžić, 
2021 
[16] 

Experimental 
Investigation on 

Influence of 
Infill Density on Tensile 
Mechanical Properties 
of Different FDM 3D 

Printed Materials 
 

PLA, ABS-Cura, 
Ultimaker S3 

desktop 3D printer, 
Shimadzu AGS-X, 

Trapezium-X 
 

ISO 527-2 

infill density 

tensile 
strength and 

elastic 
modulus 

Narges 
Dialami 
,2020 
[17] 

Numerical and 
experimental analysis of 

the structural 
performance of AM 
components built by 

fused filament 
fabrication 

 

PLA, Prusa i3 MK2S, 
Ultimaker Cura, 

ASTMD638, ISO 
527-2 1A. 

 

printing orientation, 
infill density 

tensile 
strength and 

elastic 
modulus, 

Poisson’s ratio 

Vinicius 
Cabreira, 

2020 
[18] 

 

Effect of infill pattern in 
Fused Filament 

Fabrication (FFF) 3D 
Printing on materials 

performance 

PLA, Prusa i3, Slic3r 
v1.3.0, CEAST Impact 
Izod, Instron Emic 23 

D, Marte, AY220 
ASTM 256 and ASTM 

D638 

infill patterns 
resistance and 

tensile 
strength 

Adi Pandzic 
2019 
[19] 

Effect of Infill Type and 
Density on Tensile 
Properties of PLA 
Material for FDM 

Process 
 

PLA, 3D Republika, 
Ultimaker 2+ FDM 

3D, Shimadzu AGS-X 
machine, ISO 527-2, 

ISO 627-2 

Infill type, 
infill 

density 
 

tensile 
strength 

yield strength. 
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Aleksa 
Milovanović,

2020 
[20] 

Comparative analysis of 
printing parameters 

effect on mechanical 
properties of natural 
PLA and advanced 

PLA-X material 

PLA and PLA-X, ISO 
527-2, Shimadzu 

AGS-X, Trapezium-X’ 

layer height, infill 
density, printing 

orientation and sample 
humidity 

tensile 
strength 

yield strength. 

 
Can Tang 

2020 
[21] 

Effect of process 
parameters on 

mechanical properties of 
3D printed PLA lattice 

structures 

Z-603s 3D printer, S-
3400N tungsten 

filament scanning 
electron micro- scope, 

VIC-2D system 

Printing temperature 
(°C) 

Printing speed 
Layer thickness 

tensile 
strength 

yield strength 
elastic 

modulus. 
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Industry 4.0 and Additive Manufacturing 
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A. Introduction on industry 4.0: 
I. History   

Future has always brought new technologies to simplify the humans’ living requirements, 
initially it began with the first industrial revolution 1.0 at the end of the 18th century, were steam-
powered machinery was introduced, resulting the reduction of human efforts. 

By the discovering of electricity in the time frame of “1870,1914” the second industrial 
revolution 2.0 appeared, where it offered “increase of speed, mass production, while maintaining 
low designs and manufacturing flexibility “. 

In 1969, the third industrial revelation 3.0 emerged, which brought about electronics and 
automation. This new technology enhanced the quality speed and flexibility by introducing digital 
technologies, robots monitored by computers affecting designing and manufacturing. 

Ultimately, the fourth industrial revolution 4.0 was brought onward around the 2010 era, 
aiming to fulfil the futuristic needs of the industry; the latter is highly dependent on disruptive 
technologies such as: 

 Additive manufacturing; 
 Smart machines; 
 Autonomous robots; 
 Smart materials; 
 Internet of tings; 
 Virtual Reality / augmented reality; 
 Cloud computing;  
 Artificial intelligence. 

All in the sole purpose of combining manufacturing machines with IT creating smart factories. 

Industry 4.0 advantage is the fact it is connected and uses digital technologies, which is not 
available in the conventional machining, meanwhile additive manufacturing seems to be an 
adequate choice to integrate digital technologies such as cloud computing, big data, artificial 
intelligence. 

Additive manufacturing is a vital part of providing extensive contribution to industry 4.0, 
it reduces material wastage to create a board impact on the environment, and it is now a reliable 
as a disruptive technology to complete the required task in industry 4.0  it is the integration of 
design software in 3d printing machines, to complete the manufacturing of the product, AM is an 
innovative manufacturing process by which inventory is stored in digital form and complete 
manufacturing tasks when required, so it is a flexible approach.  

Additive manufacturing has the ability to reach its full potential in tomorrow’s smart 
factories when designing items for production, the technique of manufacture is frequently the most 
essential issue for an engineer. A design can be created via a variety of production processes, each 
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with their own set of advantages and disadvantages. Any mechanical part is designed to 
accomplish a specific task relies on their mechanical property, and the mechanical properties is 
lean on the manufacturing processes method used to elaborate the mechanical part.     

II. Classification of manufacturing techniques: 

II.1. Formative (injection molding, casting, stamping and forging): 

To produce the plastic deformation of a material into a desired shape, forming procedures 
employ stresses such as compression, tension, shear, or any combination of these. This is a 
common production technique for polymers and metals. It requires a substantial initial investment 
in tooling (molds) but it subsequently produces parts fast and at a relatively low unit price. 

II.2. Subtractive (CNC, turning, drilling): 

Subtractive manufacturing is a method of producing an object by eliminating superfluous 
materials from a stock in order to get the required shape. Best suited for pieces with generally basic 
shapes, manufactured in low-to-medium numbers, and typically composed of functional materials. 

II.3. Additive (3D printing): 

Additive manufacturing (AM) or additive layer manufacturing (ALM) is the industrial 
production name for 3D printing, which is a computer-controlled process that creates three-
dimensional objects by depositing materials, usually in layers, and is best suited for low volume, 
complex designs that formative or subtractive methods cannot produce, or when a unique one-off 
rapid prototype is required. 

III. Cost comparison: 
 

 

 

 

 

 

 

 

Figure 1. Cost comparison between different manufacturing techniques 
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B. Additive Manufacturing: 

I. History of 3D Printing: 
Table 2 Time-line history of AM technology [23] 

1980 Hideo Kodama Files the first 3D Printing patent application 

1984 Birth of Stereolithography (SLA) 

1986 First patented 3D printer 

1989 Stratasys Commercialize the first Fused Deposition Modeling (FDM) printer 

1992 3D Systems Commercialize the first SLA machine 

1995 Fraunhofer Institute develops the first Selective Laser Melting (SLM) machine 

2001 EOS Commercialize the first Selective Laser Sintering (SLS) powder-based machine 

2002 Arcam Commercialize the first Electron Beam Melting (EBM) machine 

2007 Arcam produce the first CE-certified Orthopedic implant 

2010 Organovo produces the first 3D printed human blood vessel 

2013 First 3D printed robotic human heart 

2015 Bio-ink is introduced to the market by Cellink, to print tissue cartilage 

2016 Mass production of 3D printed engine parts 

2019 World biggest 3D printed building in Dubai by Apis Cor 

2021 BICO develops the world’s most accurate 3D bioprinter “Quantum X Bio” 

II. Overview of 3D Printing: 
It might be tough to choose the best 3D printing technique for a certain design. Because of 

the variety of 3D printing methods and materials available, many procedures are frequently 
acceptable, with each offering differences in features such as dimensional accuracy, surface 
quality, and post-processing needs. 

III. Classification of 3D printing technologies: 
The ISO/ASTM 52900 Standard was developed in 2015 to standardize the terminology and 

identify the various ways of 3D printing. Seven process categories have been defined. 
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IV. The 3D printing process: 
i) Producing a 3D file 
The first stage in the 3D printing process is to create a digital model. Computer Aided 

Design is the most popular approach for creating a digital model (CAD). Reverse engineering may 
also be used to create a digital model by scanning it in 3D. 

ii) STL creation and file manipulation 
To 3D print an item, a CAD model must be translated into a format that a 3D printer can 

understand. This is accomplished by first turning the CAD model into a Stereo Lithography (STL) 
file, which employs triangles (polygons) to represent the surfaces of an item, therefore reducing 
the sometimes-complicated CAD model. Once created, the file is loaded into a slicer application 
(which transforms the STL file to G-code) that slices the design into the layers that will be utilized 
to construct the part.  

3. Printing                                   4. Removal of prints                                      5. post-processing 

 

 

 

 

 

 

 

 

 
Figure 3. Slicing Process 

Figure 2. 3D Printing Categories by the ISO52900 standard [24] 
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IV. 3D printer’s type: 

IV.1. Material extrusion (FFF): 
Fused Filament Fabrication, or FFF (more often referred to as Fused Deposition Modeling, 

or FDM), is the most prevalent material extrusion process. A spool of filament is inserted into the 
printer and passes through the extrusion head. When the printer nozzle reaches the desired 
temperature, a motor pushes the heated filament through the nozzle, melting it.  

The printer then translates the extrusion head in the x and y direction, to deposit the molten 
material in a precise position where it solidified at the end of the process. Once the layer is finished, 

Figure 4. 3D Printing Process 
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the build platform slides down to start the new layer and the procedure is repeated to utile all 
operations of building the shape is achieved.  

 

 

IV.2. VAT Polymerization (SLA/DLP): 
SLA is well-known for being the first 3D printing method. Charles W. Hull created the 

term stereo lithography after patenting the technique in 1986 and establishing 3D Systems to 
market it. The method uses galvanometers or galvos (two mirrors on the x and y axes) to swiftly 
direct a laser beam over a vat, the print area, curing and hardening resin as it travels. Layer by 
layer, this procedure deconstructs the design into a sequence of points and lines that are provided 
to the galvos as a set of coordinates. To cure components, the majority of SLA machines employ 
a solid-state laser. 

Compared to SLA, DLP employs a digital light projector screen to flash a single picture of 
each layer at once. Because the projector is a digital screen, each layer's picture is made up of 
square pixels, resulting in a layer made up of little rectangular bricks known as voxels. Light-
emitting diode (LED) screens or a UV light source (lamp) guided to the surface of a substrate by 
a Digital Micro mirror Mechanism cast light onto the resin (DMD “which is a collection of micro 

Figure 5. Schematic and the printing process of a FFF printer [25] 
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mirrors that regulate where light is projected and produce the light pattern on the build surface”). 
Which is why DLP may print quicker than SLA since a whole layer is exposed at once rather than 
tracing the cross-sectional area with a laser pointer. 

SLA printers employ a point laser rather than the voxel technique used by DLP printers. 
This makes DLP faster than SLA when printing an identical part Since with SLA it takes 

longer to expose the cross-section of a part because of the ‘point laser’, while DLP can expose the 
entire part in a single flash (depending on part size) [25]. 

 

Figure 6. Schematic of an SLA printer Figure B Schematic of a DLP Printer and their printing process  

IV.2.1. Bottom-up vs. top-down: 
Vat Polymerization machines may manufacture components in two orientations (bottom-

up or top-down as illustrated in “Figure 7” SLA and DLP printers are available in both setups, 
with the design varying according to the manufacturer. 
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IV.3. Powder Bed Fusion “Polymers” (SLS): 
Powder Bed Fusion procedure using polymer powder is commonly referred to as Selective 

Laser Sintering (SLS) or simply Laser Sintering (LS) in the 3D printing industry. 

The SLS process begins with a container of polymer powder being heated to a temperature 
slightly below the polymer's melting point. A recoating blade applies a very thin layer of powdered 
material to a construction platform (usually 0.1 mm). The surface is then scanned by a CO2 laser 
beam. The laser sinters the powder selectively and solidifies a cross-section of the component. A 
pair of galvanometers, like in SLA, concentrate the laser to the correct spot.  

When the whole cross-section is scanned, the construction platform lowers in height by 
one layer thickness. The recoating blade drops a fresh layer of powder on top of the newly scanned 
layer, and the laser begins to sinter the part's subsequent cross sections onto the previously 
solidified cross-sections. This procedure is performed until all components are manufactured. 

Figure 7. Bottom-up Vs Top-Down Vat Polymerization printing [25] 
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Figure 8. Schematic and the printing process of a SLS printer [25] 

IV.4. Material Jetting (DOD): 
The print head sprays hundreds of small droplets of photopolymer, which are subsequently 

cured (solidified) by a UV laser. After a layer is deposited and cured, the build platform is lowered 
by one layer thickness, and the process is repeated to manufacture a 3D component. Material 
Jetting techniques need support, which is printed concurrently during the build from a soluble 
material that is removed during post-processing.   

Particularly Drop on Demand (DOD) printers contain two print jets, one for build materials 
and the other for dissolvable support material. It follows a predetermined route and jet material in 
a single moving point to produce the cross-sectional area of a component layer by layer. DOD 
printers also use a fly-cutter to ensure a completely flat surface before printing the following layer. 
they are commonly utilized to generate "wax-like" patterns for lost-wax casting/investment casting 
and mold manufacturing applications. 
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IV.5. Binder Jetting: 
Binder jetting is the process of moving a print head over the powder surface and depositing 

binder droplets that bind the powder particles together to create each layer of the component. After 
printing a layer, the powder bed is lowered and a new layer of powder is placed over the previously 
printed layer. It is then left in the powder to cure and strengthen. Following that, the component is 
withdrawn from the powder bed and the unbound powder is extracted using compressed air. This 
procedure is continued until a solid component is produced.  

2 Types of procedures can be compromised:   

- Sand Binder Jetting is a low-cost way of manufacturing sand-based components. The two most 
prevalent sand printing processes are: 

• Full-color models: “A printhead initially jets the binding agent, followed by a secondary 
print head that jets in color, allowing full-color models to be produced”. 

• Sand casting cores and molds: “The cores and molds are removed from the construction 
area after printing and cleaned to eliminate any loose sand. In most cases, the molds are 
then immediately ready for casting. 

Figure 9. Schematic and the printing process of a DOD printer [25] 
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-Creating metal components enables the creation of complex shapes that would be impossible to 
create using standard manufacturing processes. Only secondary processes, can generate functional 
metal components.  

Such as:  

 Infiltration: “metal powder particles are bonded together using a binding agent to 
produce a green state component. When fully cured, the parts are taken from the loose 
powder and placed in a furnace, where the binder is burned off, leaving gaps throughout 
the component. The bronze is then used to enter the voids by capillary action, producing 
components with great density and strength.”  

 Sintering: “After printing, green state components are cured in an oven, allowing them 
to be handled. The parts are then sintered to a high density in a furnace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10. Schematic and the printing process of a Binder jetting printer [25] 
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IV.6. Powder Bed Fusion “Metals” (DMLS/SLM), (EBM): 
Direct Metal Laser Sintering (DMLS) and Selective Laser Melting (SLM) both produce 

parts in a manner similar to SLS. The main distinction is that they are used in the manufacture of 
metal parts. DMLS does not melt the powder, but rather heats it to a point where it can bind 
together molecularly. SLM employs a laser to achieve a complete melt of the metal powder, 
resulting in a homogeneous part [25]. 

 Electron Beam Melting (EBM) involves scanning a thin layer of powder with a focused 
electron beam, causing localized melting and solidification over a specific cross-sectional area. 
These layers are stacked to form a solid part. Because of its higher energy density, EBM has a 
generally faster build speed than SLM/DMLS. EBM parts are created in a vacuum, and the process 
is only applicable to conductive materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Schematic and the printing process of a Binder jetting printer 
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V. Printer characteristics: 

V.1. Material extrusion (FFF): 

The user can control the quality of the extruded filament by adjusting the build speed, 
extrusion speed, and nozzle temperature. The nozzle diameter and layer height play a crucial role 
in the final resolution definition of the printed part., The smaller nozzle diameter and lower layer 
height, the smoother the surface and more detailed level of shape are obtained While all parameters 
influence a part's dimensional precision. Also, some machines utilize automated settings based on 
the type of material being used in additive manufacturing. 

Due to differential cooling, a warping phenomenon takes place. Where various areas of the 
printed section contract and shrink due to the cooling rate between different layers. A heated bed, 
as well as strong bed adhesion, are crucial in fixing an FFF component down and reducing the 
probability of warping or distortion issues [25]. 

Layer adhesion or bonding is a critical component of the FFF printing process. The 
extruded filament must bond and solidify with previously printed layers to produce a solid, 
cohesive component. The filament is pushed against the preceding layers to achieve good adhesion 
between layers. 

Support structure is required especially for any overhanging elements that are shallower 
than 45 degrees relative to the ground plane, or when there is no layer beneath to print on. the 
support material is a low-volume, have a lattice structure that can be removed easily after the end 
of the part printing. Maintaining the 45-degree limit is advised for precise prints with a smooth 
surface finish. 

 The drawback of support is that it has an undesirable effect on the quality of the surface If 
a smooth surface is required, post-processing is usually necessary. In most cases, FFF components 
are not printed solid. Parts are printed using an interior, low-density structure known as an infill to 
optimize material and time production. The percentage of infill can be changed depending on the 
application of a component. The geometry of the infill affects the performance of an FFF 
component as well. Infill geometries that are commonly used include triangular, rectangular, and 
honeycomb.  

V.2.  VAT Polymerization (SLA)/(DLP): 
In contrast to FFF, the majority of printer settings on Vat Polymerization machines are 

fixed and cannot be altered. Part orientation/support position, layer height, and material are often 
the sole operator inputs, and they are all set during the slicing step. Most printers automatically 
modify settings based on the kind of material being used. 
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The surface quality and precision of a component are governed by layer height and light 
source resolution (spot size or projector resolution). The majority of Vat Polymerization printers 
create components with layer heights ranging from 25 to 100 microns [25]. 
It may be feasible to change out DLP projector lenses to employ a narrower beam for extremely 
tiny, highly detailed prints. This enables the beam to print fewer layers at a quicker rate and with 
more resolution. 

The position and quantity of support are greatly influenced by the type of printer utilized. 
Top-down printers have support needs comparable to FFF, with overhanging features like bridges 
requiring material to hold them up and allow them to be printed properly. 

Support for bottom-up printers is more difficult. When the print is removed from the base 
of the vat during the peeling step, build layers might result in significant stresses. The print may 
fail if the peeling step is unable to remove the construct from the vat. As a result, components are 
printed at an angle. 
 

V.3. Powder Bed Fusion “Polymers” (SLS): 
Optimal machine settings are typically set up by the printer manufacturer. Resulting in the 

machine automatically adjusting to the material used ‘heat up process, printing and cooling 
phases’, but a variety of characteristics influence how well a component prints on an SLS machine. 
The precision and surface quality of a printed item is typically defined by laser spot size and layer 
height ‘100 microns as the default (0.1 mm)’. SLS components' surface finishes are generally matte 
and gritty to the touch. Powder particle geometry and size also play an important influence in 
establishing a part's characteristics. Finer powders produce a smoother part surface, whilst coarser 
particles harm surface quality. 

How effectively components are packed in the given build volume is one of the most 
essential variables to consider when preparing an SLS print. The printer has several various bins, 
the height of which determines the printing time. 

 SLS, like all 3D printing techniques, builds components layer by layer. Adhesion between 
layers is critical for achieving a robust, coherent component. The powder particles fuse n numerous 
directions after being heated initially and then exposed to the sintering laser. As a result, the 
components are essentially homogenous [25]. 

V.4. Material Jetting, (DOD): 
Material Jetting printers eject build or support material to make components. The surface 

quality and minimum feature size of a component are influenced by the size of the jet droplets and 
the layer height it automatically alters machine settings according to the material being printed. 

 It is one of the most precise kinds of 3D printing, capable of creating components with 
layer heights as low as 16 microns, resulting in exceptionally smooth surfaces. Most Material 
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Jetting machines heat the resin to an optimum temperature (30 ∼ 60°C) to regulate the viscosity 
of the photopolymer during printing, as it is critical that the construction material is in a liquid 
state. 

 Material Jetting allows printing components with either matte or glossy settings. 
Regardless of orientation or structural needs. 

  All pieces are printed in two separate materials: one for the primary construction material 
and one for dissolvable support. That is readily removed with gentle agitation resulting in a surface 
with no sign of support at all. But the support is a printed solid, which requires a considerable 
quantity of material, increasing manufacturing time and expense 

 

V.5. Binder Jetting: 
The precision and surface quality of the components are determined by the chosen layer 

height, jetted droplet size, powder size, and geometry. Binder Jetting, like SLS, does not require 
the printing of support structures since the components are surrounded by powder during the 
printing process. This shortens post-processing periods and decreases the quantity of material used 
per print. 
 

V.6. Powder Bed Fusion “Metals” (DMLS/SLM), (EBM): 
Laser spot size, powder geometry, and layer height all influence the accuracy and surface 

quality of DMLS/SLM printed parts. As for Support structures they necessitate the use of support 
material they are required to connect unsupported geometry to the build platform and act as a heat 
sink for thermal energy due to the high temperatures involved in the process and the layer-by-layer 
nature of part construction [25]. 

VI. Dimensional accuracy: 
Dimensional accuracy refers to how well a printed product fits the source file's dimensions 

and specifications. It should be taken into account while deciding on a procedure. Even if the 
printing technology has already been selected, understanding the standard accuracy and typical 
causes of failure will aid in the design process. 
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Table 3. Dimensional accuracy for all printing methods 

Dimensional accuracy ±0.5% ±0.3-±0.2 ±0.1% 

Printing Method 

FFF 

lower limit: ±0.5mm 

SLA/DLP 

lower limit: ±0.15mm 

 

Binder Jetting 

±0.2mm(metal) 

±0.3mm (sand) 

SLS 

lower limit: ±0.3mm 

Material jetting 

DMLS / SLM 

VII. 3D Printing Materials: 
3D printing empowers parts prototyping and manufacturing, for a wide range of 

applications quickly and cost-effectively. But choosing the right 3D printing process is just one 
side of the coin. Ultimately, it'll be largely up to the materials to enable the creation of parts with 
the desired mechanical properties, functional characteristics, or looks [25]. 

VII.1. Material extrusion (FFF): 
In general, thermoplastics are the best when looking for good mechanical properties such 

as PEEK and PEI they have good mechanical properties but are typically produced using industrial 
equipment that allows better control over the print environment. ABS and PLA are easy to print 
with but are Susceptible to Warping, PETG got High impact & chemical resistance, TPU and 
Nylon (PA) is commonly used for its Flexible and rubber-like parts and its good elongation.  

VII.2. VAT Polymerization (SLA/DLP): 
Vat Polymerization methods create components from thermoset photopolymers. 

Photopolymer resins have a limited shelf life as well (typically one year, if stored properly). 

When utilizing Vat Polymerization to create components, it is important that the pieces be 
appropriately cured under UV light after printing. This will guarantee that they attain their best 
characteristics “Biocompatibility, Transparency, Temperature resistance, Rubber-like flexibility” 

VII.3. Powder Bed Fusion “Polymers” (SLS): 
Low thermal conductivity materials are best suited for Powder Bed Fusion because they 

display more stable behavior during the sintering process. To create components, the polymer side 
of Laser Sintering nearly entirely uses one type of thermoplastic polymer known as polyamide that 
offers great long-term stability and chemical resistance, with nylon being the most common 
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commercial polyamide when combined with other materials such as aluminum, glass, carbon, and 
graphite to produce a composite powder with better mechanical properties, heat/chemical 
resistance, or appearance [25]. 

VII.4. Material Jetting (DOD): 
            Material Jetting technology necessitates materials with low viscosity that can be properly 
blasted in droplet form. Material Jetting, unlike other 3D printing methods, always requires two 
distinct resins while printing; one for the main construction material of the item and another for 
support material. 

VII.5. Binder Jetting: 
Binder Jetting technology uses a powder and a binding agent to create parts. Powders are 

available in a variety of materials such as “Sandstone, Stainless steel-bronze matrix that got 
excellent mechanical properties, Tungsten Used for the production of cutting tools, carbide and 
Inconel alloy with good temperature resistance”,100% of the unbounded powder can be recycled. 

VII.6. Powder Bed Fusion “Metals” (DMLS/SLM), (EBM): 
           DMLS/SLM technology, can produce parts from a variety of metals including aluminum, 
(“stainless steel, titanium” due to their relatively low thermal conductivity), cobalt-chromium, and 
Inconel. It's also used to make jewelry out of precious metals like gold, platinum, palladium, and 
silver. [25] 

Figure 12. 3D Printing Materials Groups 
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VIII. Post processing: 
Parts manufactured using 3D printing technology often need some kind of post-production 

treatment. Post-processing is a key phase in the 3D printing process. In 3D printing, post-
processing refers to any procedure or task that must be performed on a printed item, as well as any 
technology used to further enhance the product. Post-processing 3D printed components choices 
include removing support or superfluous material, washing and curing, sanding or polishing a 
model, and painting or dyeing. As such, the following post-processing techniques can be used in 
many combinations depending on the printing process [25]. 

- Support Removal: If support is required, it must be removed after printing whether it is 
cut or broken off “FFF SLA SLM/DMLS” or soaked in sodium hydroxide solution 
“Material jetting”  

- Surface Finish: Sanding is required if a smooth surface is needed and the parts are going 
to be coated a grit sand paper and a solution to wipe/rinse with is used to achieve that 
“Material jetting SLA FFF”. Media tumblers (small chips that vibrate on the outer surface) 
erode the part to a polished state “SLS/SLM”. Machining, electro polishing is employed to 
improve the surface state; micro machining is operated on demanding surfaces to reduce 
friction “SLM/DMLS”. 

- Powder removal: Loose powder is removed with compressed air jets then the surface has 
to be cleaned via plastic bead blasting to remove the prints for a smoother surface “Binder 
Jetting, SLS, and SLM/DMLS”. 

- Improving Properties: Metal Plating is where part is cleaned and coated with a conductive 
layer ‘nickel, gold, stainless steel, chrome’ then goes through standard metal coating 
process to improve strength, electrical conductivity, and hardness of the parts “FFF, SLS, 
DMLS/SLM and Material/Binder Jetting” . 

- Post Coating/Curing: Polishing is applied first to prepare for the Coating and Priming 
“SLA FFF”. Parts are coated with a lacquer or an epoxy coat, which primes the surfaces 
resulting in a smooth surface for painting improving wear resistance, surface hardness, and 
water-tightness, locking paint in and limiting smudges on the surface. Increasing its 
lifespan and protecting it from exposure “SLA, FFF, SLS, Material Jetting”. 

- Dyeing: Parts are immersed in a hot dye color bath with the desired color to ensure full 
internal and external coverage “SLS and Material Jetting. 

IX. Applications: 
One of the reasons for Additive manufacturing new upswing in usage is that it is a simple 

application that will be applied in applications in all sorts of areas. In its earlier years, 3D printing 
demonstrated higher entry prices. 3D printer models and fabrics were costly. In past years, with 
improvements and fluctuations in these technologies of both these machines and materials 
employed at them, prices have been falling down, making 3-D printing more convenient and cost-
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effective, in industry and education. In fact, 3D printing has become so popular that it is now being 
used in many industries such as describbed in the graphs below:  

 

Below are some applications listed by printers type: 
IX.1. FFF Applications: 
● Investment casting patterns 
● Electronics housings 
● Jig and fixtures 
● Form and fit testing 

 
 
 
 
 
 

𝑨𝑨 
  
 
 
 
 
 
 
 

Figure 13. Principal fields of application of 3d printing [Cotteleer and Joyce, 2014] [26] 

Figure 14. Top Left « Printing of Jigs And Fixture » ,Top Right « printed cast pattern and final 
metal investment cast , Bottom « House architecture Prototype » 
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IX.2. SLA/DLP Applications: 
● Injection and mold-like prototypes 
● Jewelry (investment casting) 
● Dental applications 
● Hearing aids 

 
 
 
 
 
 
 
 
 
 
 
 
 

IX.3. SLS Applications: 
● Functional parts 
● Low run part production 
● Complex ducting (hollow sections) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Top « SLA Printed Hearing Aids » , Bottom left «printed  injection mold » bottom right 
« Printed personalized dental mold » 

Figure 16. Top left «printed bike chain repair kit ‘REHOOK’ » Top Right « FormLabs Fuse 1 
full functionning engine » , Bottom « functional ducting used in automotive application » 
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IX.4. Binder jetting Applications: 
● Full-color models 
● Sand casting 
● Functional metal parts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IX.5. DOD Applications:  
• Full color Visual prototypes 
• Medical models 
• Injection mold-like prototypes 
• Low-run injection molds  

 
 
 
 
 
 
 

Figure 17. Top « multi-part sand cast assembly used to cast an engine block » , Bottom left « oil and gas 
stator printed from stainless steeland infiltrated with bronze » ,  Bottom Right « a full Color Jetting Printed 

engine » 
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IX.6. SLM/DMLS Applications: 
● Waveguides making  
● Medical applications 
● Aerospace and automotive applications 

 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 18.Top Left «Low Run Injection Molded Sensor Housings », Top Right «Steel 
Base Injection mold» Bottom « Full Model of a human skull » 

Figure 19. Top « prinrted Aluminium Waveguide » , Bottom Left « printed Hip Implant » , Bottom Right 
« tesla roadster space x with 100% 3d Printed ‘SuperDraco thrusters’ » 
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X. Benefits and limitations: 
Manufacturers have recognized the benefits of making small batches of sophisticated items 

since the emergence of 3D printing in the 1980s. With new technologies being released on an 
ongoing basis and so many industries shifting to additive manufacturing in recent years, more and 
more benefits are being exposed on a regular basis. Including the following for each printing 
technique previously described: for the FFF printing functional parts while being low cost is a 
main win. Having the ability of fine feature details with a smooth surface is what SLA/DLP 
printers are characterized with. Functional yet complex geometrical parts with good mechanical 
properties is why SLS printers are used for end-use parts manufacturing. Material jetting offers 
three major advantages, best surface finish, full color and multi-material printing not to mention 
that is the most precise of 3D printing methods.  

One of the main advantages of Binder jetting is the ability of printing large build volumes 
even in metal materials while maintaining the low cost. The DMLS/SLM process’s strength lies 
production of complex, bespoke parts made of well-established metal materials, which makes them 
the strongest functional parts out of all the processes. 

Unfortunately, even with all the futuristic and ideal advantages of additive manufacturing, 
as every other process and technology comes its drawback that can be shortened to: being brittle 
and not suitable for mechanical parts for SLA/DLP and Material jetting with the latter being more 
expensive for visual purposes. Having limited dimensional accuracy for even small parts, not to 
mention the bad surface finish resulted from print layers being visible is the FFF printer main 
drawback. The binder jetting printer weakness lies in its mechanical properties being not as good 
as metal powder bed fusion. The main constraints for the DMLS/SLM and the SLS printers are 
the cost for it being the highest of all the technologies, and the long lead times for the latter. 

All of this show that additive manufacturing has a potential, but also still have challenges 
that must be addressed before AM achieves widespread adoption and more financial challenges. 
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Chapter II 
Factorial Design and Desirability Function  
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I. INTRODUCTION: 
The traditional experimental methodology, for analyzing a large number of parameters, entails 

fixing the levels of all variables but one and measuring the system's response for various values of 
this variable, which necessitates a thorough examination of the system. This necessitates doing a 
large number of tests. For example, the experimenter needs to do 49 = 262144 trials using 9 
variables at 4 levels (i.e., using 4 different values for each variable). It is difficult to conduct such 
a vast number of experiments for many problems. 

In this chapter, we'll look at how to present experimental designs, and their two primary 
categories that exist so that they can allow exploitation of a large sum of parameters while doing 
a smaller number of fixed and known tests on site.  

II. Presentation of the experimental designs: 

II.1. Historical Overview: 

The experimental designs are based on the use of mathematical and statistical approaches 
to experimentation. Agronomists were the first to confront the problem of trial organization. 

They needed to investigate a large number of parameters and couldn't expand the number 
of experiments. Furthermore, the length of the experiments was a significant constraint. Fisher, 
[27] and [28], proposed a method in which numerous factors were studied at the same time for the 
first time in 1925. Statisticians and mathematicians adopted and expanded on this strategy, creating 
tables of experiments to explore a variety of parameters. 

This concept was taken up and expanded by statisticians and mathematicians, who 
constructed tables of experiments that allowed for a significant reduction in the number of trials to 
be performed while maintaining the test campaign's significance. Following the study of Dr. 
Taguchi, [29], large organizations were interested in this method as part of a quality approach. In 
the 1960s, he was a key figure in the spread of the use of design of experiments in industry in 
Japan. This strategy has been established in most fields of activity in recent years due to the 
relevance of the information presented. 

II.2. Principle: 
We will be able to achieve our needs using the design of experiments technique. Indeed, 

the premise behind it is to change the levels of one or more components (variables, discrete or 
continuous) at the same time in each trial. This will allow for a significant reduction in the number 
of experiments required while increasing the number of factors investigated, as well as the 
detection of interactions between factors and optima in relation to a response, i.e., “a quantity used 
as a criterion, and the easy modelling of the results”. The goal of employing experimental designs 



 35 

is to reduce the number of experiments required while maintaining precision in the outcomes. 
Experimental design is the subject of many books. 

The one produced by the Experiment Association [30] presents experimental designs in a 
clear manner and proposes a very comprehensive commented bibliography to help the 
experimenter discover the knowledge they need. 

There are many distinct designs available right now. Each one facilitates the solution of 
specific difficulties due to its qualities. However, experimental designs can be classified into two 
categories: 

 Designs for examining (estimating and comparing) the effects of parameters;  
 Designs for researching (estimating and comparing) the effects of variables. 

Various methods for adjusting the parameters to produce the best results. 

The most important concept that should guide the experimenter's approach is that a design 
of experiments is used to solve a specific problem. As a result, the design that will offer the 
information requested must be chosen or constructed. As a result, using the same design to 
adequately analyze the effects of the parameters while pursuing an optimum will be impossible. 

 A methodological approach must be followed in order to acquire useful information: 
 definition of the objectives and criteria, 
 definition of the factors to be studied and the experimental field, 
 construction of the experimental plan, 
 experimentation, 
 analysis of the results, 
 possible conduct of additional tests, 
 validation of results, 
 Conclusion of the study. 

At the conclusion of this approach, one can draw conclusions based on the plans' outcomes. For 
the two sorts of plans indicated above, each of these factors will be discussed in detail. 

III. Study of the effects of the factors: 
The first section is devoted to the description of experimental designs with the goal of 

estimating and comparing the impact of the elements under consideration. Various designs exist 
that allow such a study to be conducted, and many works describe how to apply them: [31], [32], 
[33], and [34]. Only the factorial experimental designs, which are the simplest and most widely 
used and have produced good results for the tuning of experimental phase, will be discussed here. 
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III.1. Complete factorial designs: 
The factorial designs, or experimental designs with two levels per factor, will be shown 

first. They're the most popular because they're the easiest and quickest to set up. First and foremost, 
we'll go over the whole factorial designs. These are labeled 2k because they have two levels and k 
factors. All of the experiments must be carried out in a full factorial design, as in the standard 
technique. 2k experiments are required for an ideal full factorial design with k factors. The principle 
is then to distribute the trials in the experimental domain as efficiently as possible. 

Consider the following example: a complete factorial design with two factors, note: 22. The 
optimal technique is to choose measurement locations at the extremes of the experimental region, 
which increases precision and takes just four trials (see Figure 20).  

 

 

 

 

 

 

 

 

The Yates notation will then be used to specify the levels of the factors, with the value -1 
representing the low level and value+1 representing the high level. By modifying the unit of 
measurement and origin, this amounts to employing decreased center variables. 

After that, the experience matrix “Table 4” can be defined. It enables the trials to be 
gathered in a table. Each column of this table represents a factor, and each row represents an 
experiment. We associate the criterion that we wish to improve with each experiment. All possible 
combinations of the two factors appear to be tried. 

Table 4. Experience matrix for a full factorial design with two factors 

Number of 
essays Factor Factor 2 

Interaction 
½ Medium Criterium 

1 - - + + Y1 
2 + - - + Y2 
3 - + - + Y3 
4 + + + + Y4 

Impact E1 E2 E3 M  

Figure 20. Location of the experimental points in the experimental area 
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The effect of the various elements, i.e., “the influence they have on the criterion”, can be 
determined using this table from the set of responses received for the given criterion. The 
difference between the means of the responses (criterion) at the high level and the mean at the low 
level is the effect of a factor by definition. The influence of factor 1, stated El, is calculated using 
Equation 2.1:       

𝐸𝐸1 = −𝑦𝑦1+𝑦𝑦2−𝑦𝑦3+𝑦𝑦4
4

  (2.1) 

By multiplying the transpose of the column associated with the factor considered with the 
column of the criterion acquired for each of the experiments and dividing by the number of trials, 
it is feasible to directly derive the value of the effects from the matrix of experiments. 

For designs with more than two levels per factor, this formula (equation 2.2) can be 
generalized. The Yates notation is no longer applicable in this situation. The number of levels per 
factor is given by Niv. The various levels are then numbered in increasing sequence, with 1 being 
the lowest and Niv being the highest. As a result, Eli denotes the average effect of component 1 at 
level I. 

Eli = Average of responses at level I - Overall average             (2.2) 

Let Me be the overall mean. In the example, it takes the value: 

𝑀𝑀 = 𝑦𝑦1+𝑦𝑦2+𝑦𝑦3+𝑦𝑦4
4

        (2.3) 

It is also feasible to compute the effect of the interactions between the different elements 
on the criterion, that is, the effect on the criterion when some factors are in a specific configuration. 
When factors 1 and 2 are at the same level, E12 shows the effect of their interaction. In the event 
that they aren't zero, 

The interactions' influence is added to the factors' effect. The elements of the column 
indicating the intended interaction can be simply determined using the Yates notation in the 
experience matrix, “Table 3”, by multiplying the columns of the factors evaluated. As a result, the 
terms of the columns of factors 1 and 2 are multiplied by two for interaction 12. The interactions' 
effect is then calculated in the same way: 

𝐸𝐸12 = y1−𝑦𝑦2−𝑦𝑦3+𝑦𝑦4
4

                    (2.4) 

The formula can be generalized to the case where each factor has more than two levels. 
When factor 1 is at level I and factor 2 is at level j, E1i2j reflects the interaction effect. Then comes 
the following: 

E1i2J = Average of responses when (E1(i), E2(j)) - M – E1i - E2J (2.5) 

An interaction between two factors is referred to as a second-order interaction, while an 
interaction between n factors is referred to as an n-order interaction. 
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It is feasible to interpret the experimental designs' outcomes based on the effects 
calculations. Consider “Table 4”, which is a two-factor complete factorial design. The goal is to 
optimize the chosen criterion. For the test campaign, for example, the following responses were 
chosen: 

�

𝑌𝑌1 = 60
𝑌𝑌2 = 30

𝑌𝑌3 = 110 = 𝑦𝑦 centre
𝑌𝑌4 = 120

            (2.6) 

The following effects and averages are then obtained 

�

𝐸𝐸1 = −5
𝐸𝐸2 = 35

𝐸𝐸3 = 10 = 𝐸𝐸 Impact
𝐸𝐸4 = 80

            (2.7) 

Because the implemented plan is a full plan, all of the tests have been completed (which 
will not always be the case, as stated below), and it is sufficient to search for which test the criterion 
is the highest in order to determine the optimum setting. This is, without a doubt, test number four. 
However, assessing the impacts obtained by the designs can help find the best combination of 
factor levels in the direction of maximizing the criterion. Factor 1 has a negative effect, but factor 
2 has a beneficial effect. We should be able to identify the ideal answer by setting factor 2 to a 
high level and factor 1 to a low one. 

 This is not the case, however. In fact, the effect of the interaction between the two factors 
is bigger than the influence of factor 1 in absolute value. Because this one is positive, the two 
components must be at the same level for the interaction to work in the direction of increasing the 
criterion. Because the influence of factor 2 is greater than that of factor 1, the levels of factor 2 and 
the interaction will be fixed, and the effect of factor 1 will be imposed. As a result of the study, 
the combination of trial 4 is determined to be the best setting.  

Full factorial designs can be used to create designs with three or more layers. Equations 
2.3 and 2.5, which are generalized formulas for calculating effects, are sufficient. These designs 
take more trials than factorial designs, but they can produce more refined findings. 

Full designs aren't particularly interesting in and of themselves because they necessitate a 
big number of trials, but they do establish the framework for the production of other sorts of 
designs that necessitate a much smaller number of trials. 

III.2. Mathematical model: 
The experience matrices are a mathematical representation of how the effects are 

organized. It is about the model's matrix, which will be referred to as X in the following. Using 
“Table 4” as an example, it is then time for X: 
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𝑋𝑋 = �
−1 −1 1
1 −1 −1
−1
1

1
1

−1
1

   1
   1
   11

�          (2.8) 

The effects can thus be directly calculated: 

𝐸𝐸 = 1
4
𝑋𝑋𝑡𝑡𝑌𝑌    (2.9) 

The first concept of the designs, as previously said, is to creatively arrange the experimental 
sites in order to acquire the best possible precision on the outcomes in the fewest feasible trials. 
The Hadamard matrices are the best matrices of the model in terms of precision on the effects for 
factorial designs. This argument will be discussed in more detail later. 

H is a Hadamard matrix if and only if: 

 H is a square matrix of dimension NH, 
 - ∀(i, j) 𝜖𝜖 [1 NH]: H (i, j) ϵ {- 1, 1}, 
 it respects the relation: 

𝐻𝐻𝑇𝑇𝐻𝐻 = 𝑁𝑁𝐻𝐻𝐼𝐼𝑁𝑁𝐻𝐻          (2.10) 

With INH identity matrix of dimension NH. 

The condition of existence of a Hadamard matrix is that NH= 4[4]. Such a matrix is 
orthogonal which explains why the vector of effects is a linear combination of the responses. 

We must examine the variance of the effects to explain the precision provided by such 
model matrices. Using the example of “Table 4”, it appears that each effect is calculated using the 
measurements of the responses from all four trials in equation 2.3. Let CT denote the standard 
deviation (also known as error in this section) of each trial's response. The variance of component 
1's influence, V(E1), is then calculated as follows: 

𝑉𝑉(𝐸𝐸1) = 1
4
�𝑉𝑉(𝑦𝑦1) + 𝑉𝑉(𝑦𝑦2) + 𝑉𝑉(𝑦𝑦3) + 𝑉𝑉(𝑦𝑦4)� = 1

16
(𝜎𝜎2 + 𝜎𝜎2 + 𝜎𝜎2 + 𝜎𝜎2) = 𝜎𝜎2

4
   (2.11) 

The error on the effect of factor 1, 𝜎𝜎Ei is then: 

𝜎𝜎𝐸𝐸1 = �𝑉𝑉(𝐸𝐸1) = 𝜎𝜎
2
 (2.12) 

Because all of the measured responses were taken into account in the computation, the best 
feasible accuracy was achieved. The Hadamard matrices, which calculate the effects by taking into 
account all of the measurements, provide for the best possible precision for a given number of tests 
(multiple of four), [31] and [35]. 

The results can then be extrapolated to other situations. If the response error is 𝜎𝜎 and n 
trials are conducted using a Hadamard type model matrix, the following error 𝜎𝜎𝐸𝐸  on the influence 
of a factor or interaction results: 
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𝜎𝜎𝐸𝐸 = �𝑉𝑉(𝐸𝐸) = 𝜎𝜎
√𝑛𝑛

 (2.13) 

It is therefore advised that such matrices be used in factorial designs, as they impose a 
constraint on the shape and size of the table of experiments, as well as the number of trials to be 
done. 

III.3. Fractional factorial designs: 
When there are more than a few components to analyze, full factorial designs are quite 

greedy in terms of number of experiments, as seen in the previous section. Indeed, two-level 2k 
trials with k factors are required. Fractional factorial designs, which are based on the concept of 
complete factorial designs, can be used to reduce the number of tests. To limit the number of 
experiments, the approach entails tolerating a degree of indeterminacy in the influence of the 
components. The tests are then structured in the experimental domain to conduct the fewest 
number of trials possible while achieving the highest level of precision. The following section will 
show an example of fractional factorial designs at two levels. 

The goal is to reduce the number of trials by employing a complete design of lower order 
than the number of elements to be researched and studying the additional factors using the 
interactions between the factors of this full design. 2k-p represents the difference between the 
number of factors studied and the number of factors in the full design used in such two-level 
fractional factorial designs, where k represents the number of factors studied and up represents the 
difference between the number of factors studied and the number of factors in the full design used. 
Using “Table 4” as an example, it is feasible to investigate a third component, whose influence 
will be added to that of the interaction between factors 1 and 2 in column 3. “Table 5” shows a 
design like this, which is labeled 23-1. 

Table 5. Experience matrix for a two-factor fractional design 

Number of 
essays Factor 1 Factor 2 Factor 3 = 

Interaction ½ Medium Criterium 

1 - - + + Y1 
2 + - - + Y2 
3 - + - + Y3 
4 + + + + Y4 

Impact E1 E2 l3 M  
The effect of the factor 3 (E 3) and the interaction (E 12) are then aliased and it comes: 

𝑙𝑙3 = 𝐸𝐸3 + 𝐸𝐸12  (2 .14) 

l3, called alias or contrast, is then the main effect E3 increases by the interaction E12. 

The number of extra elements that can be investigated is determined by the number of 
interactions and the overall design size. The greatest number of factors that can be researched as a 
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function of the number of primary factors that are the factors in the basic full design is shown in 
“Table 6” 

 Table 6. Fractional designs and number of factors studied 

Basic plan 
Number of main 

factors 
Number of factors 
that can be aliased 

Maximum number 
of factors studied 

22 2 1 3 
23 3 4 7 
24 4 11 15 

 

Let k be the number of factors in the basic complete design considered. The number of 
interactions of order q is then given by: 

𝑁𝑁𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 𝑖𝑖𝑜𝑜 𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖 𝑞𝑞 = 𝐶𝐶𝑘𝑘
𝑞𝑞 = 𝑘𝑘!

𝑞𝑞!(𝑘𝑘−𝑞𝑞)!
  (2.15) 

The maximum number of factors that can be aliased is therefore: 

𝑁𝑁𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑛𝑛 𝑜𝑜𝑖𝑖 𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝐶𝐶𝐾𝐾
𝑞𝑞𝑘𝑘

𝑞𝑞=2 = 2𝑘𝑘 − 𝑘𝑘 − 1  (2.16) 

Calling the effect of a single factor a first-order interaction, the interaction between two 
factors a second-order interaction and so on, the maximum number of factors that can be studied 
is given by the following relationship: 

𝑁𝑁 𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑛𝑛 𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑖𝑖𝑜𝑜 𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡𝑚𝑚𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜  = ∑ 𝐶𝐶𝐾𝐾
𝑞𝑞𝑘𝑘

𝑞𝑞=2 = 2𝑘𝑘 − 𝑘𝑘 − 1 (2.17) 

One of the criteria for choosing the basic two-level full factorial design therefore depends 
on the number of factors one wishes to study. 

III.4. Analysis of variance: 
The non-replicability of the measured outcomes is an inherent challenge of the experiment. 

This issue can stem from a variety of sources, causing the final result to be skewed. The issue is 
deciding whether or not a result is influential. 

The issue is deciding whether or not a result is influential. It will have to calculate the error 
in the calculations of the various effects. 

The first step in minimizing the influence of measurement derivatives under the constraint 
of fluctuating external conditions is to perform the tests in a random order. 

In a second phase, the mistake committed on the outcomes must be quantified, and the 
experimental error retained for the analysis of the results must be chosen, allowing statistical 
techniques to be used to exploit the plan's results. The paper [38] contains the mathematical parts 
as well as the many tables needed in the statistical analysis. 
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III.5. Estimating the experimental error on an effect: 
The value of the experimental error Δx committed on the response is assumed to be known 

and to have a normal distribution (Gaussian curve). This distribution, shown in “Figure21”, can be 
defined by two quantities, the mean Ȳ and the standard deviation σ. 

The probability density f of a continuous random variable x of mean µ and standard 
deviation σ can be defined by: 

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2�
𝑥𝑥−𝜇𝜇�
𝜎𝜎 �

2

 (2.18) 

The real value of the response is then defined as a confidence interval in which the actual 
value has a high possibility of being found. As the size of the confidence interval grows, so does 
the probability. 

The real value of a normal distribution derived from a Yi measure is: 

 68% chance of being in the Yi± σ interval,  
 95% chance of being in the Yi ± 2 σ interval,  
 99.9% chance of being in the range Yi± 3 σ interval. 

 

 

 

 

 

 

 

 

Assuming the measurement error Dy is equal to the standard deviation, the precision of the 
effects depends on the number n of trials considered, i.e.: 

∆𝐸𝐸 = ∆𝑦𝑦
√𝑛𝑛

= 𝜎𝜎
√𝑛𝑛

   (2.19) 

The experimenter will select the confidence interval corresponding to a percentage error 
based on his needs. The most common error [31] amounts to roughly one standard deviation, or 
two out of three odds of not being wrong. 

Figure 21. Normal distribution 
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It should be highlighted, however, that there are more unfavorable circumstances than the 
one in which the distribution of measurements is known and confidence intervals can be calculated. 
Indeed, estimating the experimental error will frequently be required to establish whether effects 
are important. 

III.6. Estimation of the experimental error: 
The knowledge of the experimental error is therefore very important and when it is not 

known, it must be estimated. 

A first solution consists in carrying out several measurements at the same point of the 
experimental domain (often the center) by assuming an iso-distribution on this one. This approach 
leads to an estimate of the standard deviation σ: 

𝑠𝑠 = �
1

𝑁𝑁 − 1
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑁𝑁

𝑖𝑖=1

     (2.20) 

With: 

 N: number of measurements made, 
 Yi: measurement of the response number i, 
 Ȳ: average of the responses Yi 

Because of the small number of trials, the error estimate distribution resembles a student 
curve, which is a flattened Gauss curve. To avoid being wrong, it will be required to raise the size 
of the confidence intervals. However, as the number of trials rises, the precision improves and the 
student curve converges to the Gauss curve. “Table 7” shows the values of the student variable 𝑡𝑡𝛼𝛼𝑣𝑣 
with v degrees of freedom and a likelihood of exceeding an in absolute value: 

𝑃𝑃{𝑇𝑇 > |𝑡𝑡𝛼𝛼𝑣𝑣|} = 𝛼𝛼        (2.21) 

“Figure 22” shows this probability. 

 

 

 

 

 

 

 Figure 22. Distribution table of Student's law 
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Table 7. Student’s Table 

 V 
Α 1 2 3 4 9 19 ∞ 

0.3 1.96 1.38 1.25 1.19 1.1 1.06 1.03 
0.1 6.31 2.92 2.35 2.13 1.83 1.73 1.64 
0.05 12.71 4.3 3.18 2.78 2.26 2.09 1.96 
0.01 63.66 9.92 5.84 4.6 3.25 2.86 2.58 

The number of measurements N is related to the number of degrees of freedom v by the 
relation 2.22: 

𝑣𝑣 = 𝑁𝑁 − 1         (2.22) 

The multiplicative coefficients to be applied to the estimation of the standard deviation are 
then obtained according to the number of measurements performed and the desired precision. 
Thus, a confidence interval with a probability α is defined by ±𝑡𝑡𝛼𝛼𝑣𝑣 x s around the considered value 
of the considered value. 

 

The second option is to repeat each of the n trials of the experimental design N times. The 
previous sections showed that, depending on the number of experiments n, the standard deviation 
on the effects is a fraction of the standard deviation on the response using Hadamard matrices: 

𝜎𝜎𝐸𝐸 =
𝜎𝜎
√𝑛𝑛

      (2.23) 

Let N be the number of repetitions of each experiment. By performing N repetitions for 
each experiment i, we improve the estimate is of the standard deviation on the measured response.  
By noting yam, the measure of the jet repetition of the experiment i and Yi the average of the N 
repetitions of the itch experiment, we can then define the variance 𝑠𝑠𝑖𝑖2: 

𝑠𝑠𝑖𝑖2 =
1

𝑁𝑁 − 1
�(𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑦𝑦𝚤𝚤�)2  
𝑁𝑁

𝑗𝑗=1

   (2.24) 

It is feasible to define the estimate of the standard deviation throughout the entire domain, 
s, based on the widely recognized assumption [30] that the iso-variance on the answer is guaranteed 
over the entire experimental domain and that the mistakes on the result are independent. Equation 
2.25 follows: 

𝑠𝑠 = �𝑠𝑠𝚤𝚤
2���

𝑛𝑛
= �∑ 𝑠𝑠𝑖𝑖2𝑁𝑁

𝐽𝐽=1

𝑛𝑛 ∗ 𝑁𝑁
     (2.25) 

Let us then estimate the standard deviation on the effects, see equation 2.26: 
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𝑠𝑠𝐸𝐸 =
𝑠𝑠

√𝑁𝑁 ∗ 𝑛𝑛
      (2.26) 

It is then possible to define the confidence interval. The estimate of the standard deviation 
will therefore be weighted by the value of the student’s variable at n x (N - 1) degrees of freedom 
for a probability in absolute value 𝛼𝛼 ∶  𝑡𝑡 𝛼𝛼

𝑛𝑛∗(𝑁𝑁−1) 

The precision of the effects obtained will be improved by repeating the trials of the table 
of experiments in this manner. However, such an improvement in trials is contingent on a higher 
cost. 

Factorial designs allow researchers to investigate the effects of various variables on one or 
more criteria and determine an optimal solution. However, the value of the levels chosen for each 
of the parameters during the study determines the best point. The response surface approach, 
described in the following section, will allow you to model the evolution of the criterion between 
various levels in order to arrive at an optimal point that is independent of them. 

IV. Response surfaces: 
In this part, the experimental designs allowing to adjust the parameters to reach an optimum 

between the levels of the factors will be presented. The principle here is to model the experimental 
response surface, i.e., “the evolution of the criterion on a bounded universe of discourse of the 
variables and to seek the optimum of the estimated surface”. Here again, many references on the 
subject exist: [30], [39] and [49]. Among the numerous types of designs allowing to build response 
surfaces, we to construct response surfaces, we will only present and use here the centered 
composite here only the centered composite designs. 

IV.1. Model Definition: 
The designs we have presented previously allow us to study and compare the effects of 

factors on a response. The objective is now to obtain a so-called optimal setting of these parameters 
over the range of variation of these parameters with respect to the selected criterion. It is therefore 
desirable to be able to search for these coefficients "between" the levels given to the variables. 
Reduced centered variables will again be used, taking values in the interval [-1, 1] on the 
experimental domain studied in relation to the center of the latter. The following coding relation 
is used to transform the value u ϵ [cumin, xmax) of the factor U where cumin and xmax represent the 
extreme values of U on the experimental domain into the reduced centered variable x ϵ [-1, 1]: 

𝑥𝑥 =
𝑢𝑢 − 𝑢𝑢𝑛𝑛𝑖𝑖𝑛𝑛 + 𝑢𝑢𝑛𝑛𝑖𝑖𝑚𝑚

2
𝑢𝑢𝑛𝑛𝑖𝑖𝑚𝑚 − 𝑢𝑢𝑛𝑛𝑖𝑖𝑛𝑛

2
            (2.27) 
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It will now be necessary to position the tests judiciously within the experimental domain 
in order to be able to model the studied experimental surface in a reduced number of experiments. 
To do this, there are many types of designs, each of which provides each providing answers to 
different types of problems [30]. The first question is based on the type of model that will be used 
to estimate the experimental surface. It will then be necessary to choose the design accordingly 
and to carry out a statistical analysis of the model obtained in order to check whether the regression 
surface gives a usable approximation of the real phenomenon. Finally, the obtained surface will 
be analyzed in order to find the optimal setting for the chosen problem. This analysis will be all 
the easier if the choice of the model is judicious. Thus, a slight loss of information at the level of 
the correlation, i.e., the adequacy between the model and the real response, could be interesting in 
terms of exploitation of the model if it is easily exploitable. 

Consequently, the assumption that the response surface can be estimated by a particular 
form of modeling: a quadratic form is commonly adopted, [39] and [40]. This choice is based on 
the fact that this model is well known and easy to exploit and that its particular form, based on 
polynomials of the second degree, is applicable to of the second degree, is applicable to many 
problems. Indeed, it is always possible to define in the vicinity of a point a development in series 
of any function. By posing η the estimate of the value of the response studied for a given operating 
point, βm and βMn the coefficients of the polynomial and xi the variable associated with the factor 
l, l ϵ [1- k], the general form of the model can be defined: 

𝜂𝜂 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 + �𝛽𝛽𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖2 + �( � 𝛽𝛽𝑖𝑖𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑥𝑥𝑗𝑗)
𝑘𝑘

𝑗𝑗=𝑖𝑖+1

𝑘𝑘−1

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

        (2.28) 

We then have p unknowns which are the coefficients β of the model: 

𝑝𝑝 =
(𝑘𝑘 + 2)!
𝑘𝑘! 2!

=
(𝑘𝑘 + 1)(𝑘𝑘 + 2)

2
                (2.29) 

It will thus be necessary to carry out a number of experiments higher or equal to the number 
p of unknowns to estimate them. It thus appears that it will be necessary to limit the number of 
factors studied number of factors studied, the number of necessary tests increasing in a factorial 
way with it. factorially with it. In practice, the designs allowing the study of the response surfaces 
response surfaces are often used in addition to an initial study of the effects of the factors of the 
factors which allows to select the parameters used to model the experimental surface, i.e., the 
experimental surface, i.e., the most influential factors. 

IV.2. Centered composite planes: 
We chose the centered composite designs, [39] and [40], for the study of response surfaces. They 
have the advantage of being easy to construct because they are built by adding measurement points 
to a complete factorial design. The designs for the study of a response surface are often used after 
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a study of the effects of the factors, it is then sufficient to carry out only a few additional 
experiments to estimate the response surface of the criterion studied.  

However, they are rather greedy in terms of number of trials compared to other types of 
designs [30], but this number remains reasonable when the number of factors studied remains low 
(between 2 and 4 parameters). Another disadvantage is that this type of design requires 5 levels 
per factor and that it can sometimes be physically difficult to realize them. A very complete 
presentation of these designs is given in [30]. A centered composite design is defined by: 

 A full factorial design 2k, 
 n0 repetitions in the center of the experimental domain, dedicated to statistical 

analysis, 
 Two-star points per parameter and positioned on the axes of each of them at a 

distance from the center of the domain. These points contribute to the evaluation of 
the quadratic terms of the polynomial model, i.e., they give information about the 
curvature of the response surface. 

“Figure 23” shows an example of a centered composite design for the study of two 
parameters (the additional tests giving information about the surface curvature are placed outside 
the experimental domain). 

The total number of trials to be conducted, N, will depend on the number of factors k 
studied and the number of repetitions in the center of the domain, n0: 

𝑁𝑁 = 2𝐾𝐾 + 2 ∗ 𝐾𝐾 + 𝑛𝑛0                  (2.30) 

 

 

 

 

 

 

 

 

 

 

 Figure 23. Centered composite design for the study of two factors 
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The number of repetitions in the center and the value to be given to a will depend on the 
properties that will be attributed to the design, as presented a little further on. To illustrate the 
construction of a centered composite design, the example of 3 factors design, will be presented. 
First, the experience matrix, ƹ, will be defined in equation 2.31. It defines the levels of each of the 
parameters at each experiment. Each column of the matrix is associated with a factor. 

𝜀𝜀 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−1 −1 −1
+1 −1 −1
−1 +1 −1
+1 +1 −1
−1 −1 +1
+1 −1 +1
−1 +1 +1
+1 +1 +1
+𝛼𝛼 0 0
−𝛼𝛼  0 0
0  +𝛼𝛼 0

0  −𝛼𝛼 0
0  0 +𝛼𝛼
0 0 −𝛼𝛼
 0    0       0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

            (2.31) 

For the simplicity of the representation, n0 is here temporarily fixed at 1. then determine 
the value to give to it, as well as to α 

From this matrix of experiments, it is possible to define the matrix of the model allowing 
to calculate the coefficients of the model. With k = 3 factors studied, a 3-dimensional space with 
p = 10 unknowns is obtained. Letβbe the vector of coefficients defined by: 

𝛽𝛽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽11
𝛽𝛽22
𝛽𝛽33
𝛽𝛽12
𝛽𝛽13
𝛽𝛽23⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

                  (2.32) 

The following equation of the model then comes, (2.33), application for 3 unknowns of 
equation 2.28: 

𝜂𝜂 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 + �𝛽𝛽𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖2 + �( � 𝛽𝛽𝑖𝑖𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑥𝑥𝑗𝑗)
3

𝑗𝑗=𝑖𝑖+1

2

𝑖𝑖=1

3

𝑖𝑖=1

3

𝑖𝑖=1

        (2.33) 
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To calculate these coefficients by the least square’s method, the model matrix, X, equation 
2.34, will be used. This matrix extends the experiment matrix by defining in each column the levels 
of each of the coefficients of the model equation for each trial. These new columns are calculated 
by multiplying the columns of the experiment matrix. 

𝑋𝑋 =  

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 −1 −1
1 1 −1
1 −1 1

−1 1 1     
−1 1 1
−1 1 1

   
1 1 1
1 −1 −1 
1 −1 1

 1
1
−1

1 1 1 −
1 −1 −1 
1 1 −1

1 1 1
1    1 1
1 1 1

     1 1 −1
      1 1 −1

1 −1 1

−1
−1
−1

1 −1 1   
1 1 1
1 +𝛼𝛼 0

1 1 1        
1 1 1
0 +𝛼𝛼2 0

1 −1 −1
1 1 1
0 0 0

1
1
0

1 −𝛼𝛼 0
1 0 +𝛼𝛼
1 0 −𝛼𝛼

       0 +𝛼𝛼2 0
0 0 +𝛼𝛼2
0 0 +𝛼𝛼2

0 0 0
0 0 0
0 0 0

0
0
0

1 0 0
1 0 0
1 0 0

    +𝛼𝛼   0 0
−𝛼𝛼 0 0
0 0 0

    +𝛼𝛼2 0 0   
      +𝛼𝛼2 0 0

0 0 0

0
0
0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

           (2.34) 

Then comes the information matrix. (TX X) (2.35), which defines the properties and 
qualities of the experimental design. 

( 𝑋𝑋𝑋𝑋 
𝑡𝑡 ) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑁𝑁 0 0
0 𝑎𝑎 0
0 0 𝑎𝑎

0 𝑎𝑎 𝑎𝑎
0 0 0
0 0 0

𝑎𝑎 0 0
0 0 0
0 0 0

0
0
0

0 0 0
𝑎𝑎 0 0
𝑎𝑎 0 0

𝑎𝑎 0 0
0 𝑐𝑐 𝑏𝑏
0 𝑏𝑏 𝑐𝑐

0 0 0
𝑏𝑏 0 0
𝑏𝑏 0 0

0
0
0

𝑎𝑎 0 0
0 0 0
0 0 0

0 𝑏𝑏 𝑏𝑏
0 0 0
0 0 0

𝑐𝑐 0 0
0 𝑏𝑏 0
0 0 𝑏𝑏

0
0
0

0 0 0 00 0 00 0 𝑏𝑏 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

            (2.35) 

With: 

�

𝑁𝑁 = 2𝑘𝑘 + 2𝑘𝑘 + 𝑛𝑛0 = 14 + 𝑛𝑛0
𝑎𝑎 = 2𝑘𝑘 + 2𝛼𝛼2 = 8 + 2𝛼𝛼2

𝑏𝑏 = 2𝑘𝑘 = 8
𝑐𝑐 = 2𝑘𝑘 + 2𝛼𝛼4 = 8 + 2𝛼𝛼4

              (2.36) 

This matrix leads to the dispersion matrix (Tx)-1 used in the least squares method to estimate 
the parameter vector β. This matrix takes the form described in equation 2.37 
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( 𝑋𝑋𝑋𝑋 
𝑡𝑡 )−1 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐷𝐷 0 0
0 𝐸𝐸 0
0 0 𝐸𝐸

0 𝐶𝐶 𝐶𝐶
0 0 0
0 0 0

𝐶𝐶 0 0
0 0 0
0 0 0

0
0
0

0 0 0
𝐶𝐶 0 0
𝐶𝐶 0 0

𝐸𝐸 0 0
0 𝐴𝐴 𝐵𝐵
0 𝐵𝐵 𝐴𝐴

0 0 0
𝐵𝐵 0 0
𝐵𝐵 0 0

0
0
0

𝐶𝐶 0 0
0 0 0
0 0 0

0 𝐵𝐵 𝐵𝐵
0 0 0
0 0 0

𝐴𝐴 0 0
0 𝐹𝐹 0
0 0 𝐹𝐹

0
0
0

0 0 0 00 0 00 0 𝐹𝐹 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

            (2.37) 

With: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝐴𝐴 =

−𝑁𝑁 ∗ 𝑏𝑏 − 𝑎𝑎2

−2𝑁𝑁 ∗ 𝑏𝑏2 + 3𝑎𝑎2(𝑏𝑏 − 𝑐𝑐) + 𝑁𝑁 ∗ 𝑐𝑐(𝑏𝑏 + 𝑐𝑐)

𝐵𝐵 =
𝑁𝑁 ∗ 𝑏𝑏 − 2𝑎𝑎2 + 𝑁𝑁 ∗ 𝑐𝑐

−2𝑁𝑁 ∗ 𝑏𝑏2 + 3𝑎𝑎2(𝑏𝑏 − 𝑐𝑐) + 𝑁𝑁 ∗ 𝑐𝑐(𝑏𝑏 + 𝑐𝑐)

𝐶𝐶 =
−𝑎𝑎

2𝑁𝑁 ∗ 𝑏𝑏 − 3𝑎𝑎2 + 𝑁𝑁 ∗ 𝑐𝑐

𝐷𝐷 =
2𝑏𝑏 + 𝑐𝑐

2𝑁𝑁 ∗ 𝑏𝑏 − 3𝑎𝑎2 + 𝑁𝑁 ∗ 𝑐𝑐

𝐸𝐸 =
1
𝑎𝑎

𝐹𝐹 =
1
𝑏𝑏

              (2.38) 

 

From the information and dispersion matrices, it is necessary to look for the values to assign 
to αand n0 to obtain interesting properties. In the case of fractional factorial designs, the 
orthogonality condition was sought to improve the precision of the effects. For the centered 
composite designs, it will not be possible to ensure this property, the diagonal terms of the matrix 
of information (corresponding to the additional points giving information on the curvature of the 
surface) cannot be cancelled. Other conditions on these two parameters will then be sought to 
ensure certain properties such as pseudo-orthogonality, is variance by rotation or uniform 
precision. 

The property of pseudo-orthogonality consists in approximating the dispersion matrix to a 
diagonal matrix by canceling the terms noted B. It is possible to show,[30], that to cancel these 
coefficients, one must choose α and n0 such that: 

𝛼𝛼 = �
2𝑘𝑘(�2𝑘𝑘 + 2𝑘𝑘 + 𝑛𝑛0 − √2𝑘𝑘)2

4 �

1
4

                   (2.39) 
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A second interesting property isovariance by rotation. The FD X 06-080 standard, [AFN89] 
defines it as follows: 

"An experimental setup exhibits rotational is variance properties when the variance function 
depends only on the distance to the center of the experimental domain. Thus, no direction is 
favored." 

The condition of isovariance by rotation is given by the condition in Eq. 2.40 [30]: 

𝛼𝛼 = �2𝑘𝑘4            (2.40) 

The last property that will interest us, the notion of uniform precision, is also defined by 
the FD X 06-080 standard, [AFN89]: 

"An experimental device has uniform precision properties if the variance function is 
practically constant within a sphere having the same center as the experimental domain. It can only 
be obtained if isovariance by rotation is already assured." 

It is possible to show that the condition of uniform precision is: 

𝑛𝑛0 =
(𝑘𝑘 + 3) + √9𝑘𝑘2 + 14𝑘𝑘 − 7

4(𝑘𝑘 + 2) (�2𝑘𝑘 + 2)2 − 2𝑘𝑘 − 2𝑘𝑘           (2.41) 

Since rotational isovariance depends only on α, it is possible to associate either pseudo-
orthogonality or uniform precision with this property. On the other hand, the two latter are 
incompatible because the uniform precision is inseparable from isovariance by rotation, [30]. 
“Table 8” gives the values to be given to α and n0 to obtain the different properties.  

In the following, the properties of isovariance by rotation and uniform precision will be 
preferred in order to keep a quasi-constant variance on the experimental domain. Experimental 
domain. The statistical analysis will be all the easier. For k = 3 factors. 

Table 8. Conditions of isovariance by rotation, pseudo-orthogonality and uniform precision 

Factors Numbers 
 K=2 K=3 K=4 K=5 

2k 4 8 16 32 
2k 4 6 8 10 

α (rotational isovariance) 1.414 1.682 2 2.378 

N0 (pseudo-orthogonality) 8  9  12  17  

N0 (uniform precision)  5  6  7  10 

N= 2k+2k+n0 16 13 23 20 36 31 59 52 



 52 

It comes then: 

�𝛼𝛼 = 1.682
𝑛𝑛0 = 6                                    (2.42) 

From the matrix of experiments, the tests can now be performed and lead to the 
measurement of the response vector Y: 

𝑌𝑌 = (𝑦𝑦1  𝑦𝑦2  𝑦𝑦3  …𝑦𝑦𝑁𝑁       (2.43) 
𝑡𝑡  

IV.3. Analysis of results: 
The exploitation of the results will pass by the use of the least squares method. This method allows 
us to estimate the vector of parameters β by minimizing the square of the residuals. Let �̂�𝛽 be the 
estimate of β. 

�̂�𝛽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝛽𝛽0
𝛽𝛽1�
𝛽𝛽2�
𝛽𝛽3�
𝛽𝛽11�
𝛽𝛽22�
𝛽𝛽33�
𝛽𝛽12�
𝛽𝛽13�
𝛽𝛽23�

�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

                      (2.44) 

The existence of residuals during estimation implies the introduction of an error between 
the real response and the estimated response. Let the vector of these errors be: 

𝐸𝐸 = (𝑒𝑒1  𝑒𝑒2  𝑒𝑒3  … 𝑒𝑒𝑁𝑁 )      (2.45) 
𝑡𝑡  

Then comes the following matrix system by noting Y the estimate of the response vector: 

𝑌𝑌 = 𝑋𝑋 ∗ �̂�𝛽 + 𝐸𝐸 = 𝑌𝑌� + 𝐸𝐸             (2.46) 

The estimation of the coefficients is then directly obtained by using the matrices defined 
above and thus with the properties of isovariance by rotation and uniform precision: 

�̂�𝛽 = ( 𝑋𝑋𝑋𝑋 
𝑡𝑡 )−1 ∗ ( 𝑋𝑋) ∗ 𝑌𝑌 

𝑡𝑡           (2.47) 

Let then be the residues, E: 

𝐸𝐸 = 𝑌𝑌 − 𝑌𝑌�                              (2.48) 

The results obtained can then be represented graphically in order to compare the measured 
points and the estimated responses. To do this, it is necessary to plot the model's adequacy graph. 
The measured responses are placed on the abscissa and the estimated responses on the ordinate, 
figure 24. If the scatterplot is aligned with the line of equation y = x, the descriptive quality of the 
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model will a priori be rather good. Figure 24 gives an example of a goodness-of-fit plot for the 
study of the IAE of the output voltage of a sine wave absorber 

 

 

 

 

 

 

 

 

 

By this graphical representation a first estimator of the descriptive quality of the model is 
then of the model is then obtained. It is then easy to plot the modeled response surface as a function 
of the variables studied. Figure 25 represents as an example the evolution of the criterion as a 
function of two parameters. 

 

 

 

 

 

 

 

 

 

There are other representations, such as iso-response curves giving the zones in which the 
criterion takes a same value. However, such representations are difficult to use directly when the 
number of parameters studied is greater than two. In any case, before exploiting the model 
obtained, it is necessary to carry out a statistical study of it. 

Figure 24. Example of a model adequacy graph 

Figure 25. Example of a response surface estimation 



 54 

IV.4. Statistical analysis of results: 
A series of statistical tests will now be conducted to judge the quality of the model. A 

detailed presentation of statistical tests applied to regression methods can be found in [41] and 
[42]. This study can be decomposed into three steps: 

 The global analysis of the system, 
 The study of the coefficients of the model, 
 The analysis of the residuals. 

The objective of the global analysis of the results is to define the descriptive quality of the 
model by means of an analysis of variance table (ANOVA table). For To do this, several variables 
must be defined beforehand. 

Let SCT be the total sum of squares, i.e., the sum of the squares of the differences between 
the response measures and their mean: 

𝑆𝑆𝐶𝐶𝑇𝑇 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2                (2.49)
𝑁𝑁

𝑖𝑖=1

 

This sum can be decomposed as a sum of two terms, SCM, the sum of squares due to the 
regression or variation explained by the model and SCE, the sum of squares of the residuals or 
variation unexplained by the model: 

𝑆𝑆𝐶𝐶𝑇𝑇 = 𝑆𝑆𝐶𝐶𝐸𝐸 + 𝑆𝑆𝐶𝐶𝑇𝑇                    (2.50) 

SCM is the sum of the squares of the errors between the estimated responses and the mean 
of the measured responses: 

𝑆𝑆𝐶𝐶𝑆𝑆 = �(𝑦𝑦𝚤𝚤� − 𝑦𝑦�)2
𝑁𝑁

𝑖𝑖=1

                 (2.51) 

SCE is the sum of the square of the differences between the measured and estimated 
responses: 

𝑆𝑆𝐶𝐶𝐸𝐸 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑁𝑁

𝑖𝑖=1

                 (2.52) 

A statistical test to reject the hypothesis (H0) that the model does not describe the variation 
of the trials will now be performed. When this hypothesis is verified, it is possible to show [41] 
that the Fc statistic described in equation 2.53 follows a Fisher distribution with respectively (p-1) 
and (N - p) degrees of freedom 

𝐹𝐹𝐶𝐶 =
𝑆𝑆𝐶𝐶𝑆𝑆
𝑆𝑆𝐶𝐶𝐸𝐸

                       (2.53) 
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Thus, the hypothesis (H0) is rejected with probability α  if: 

𝐹𝐹𝐶𝐶 > 𝐹𝐹(𝑖𝑖,𝑝𝑝−1 ,𝑁𝑁−𝑝𝑝)           (2.54) 

In equation 2.54, F (a, p-1, N-p) is the (1- a) quantile of a Fisher distribution with (p-1) and (N-
p) degrees of freedom. 

These data lead to the construction of the ANOVA “Table 11”, summarizing these different 
results. It is thus possible to conclude about the capacity of description of the variations of the tests 
of the model. The next point consists of defining the percentage of total variation explained by the 
model by means of the coefficient of determination R2, taking values in the interval [0 1]: 

𝑅𝑅2 =
𝑆𝑆𝐶𝐶𝑆𝑆
𝑆𝑆𝐶𝐶𝑇𝑇

= 1 −
𝑆𝑆𝐶𝐶𝐸𝐸
𝑆𝑆𝐶𝐶𝑇𝑇

               (2.55) 

Table 9. ANOVA Table: Regression Analysis 

Source of variation 
Degrees of 
freedom 

Sum 
of squares Average of squares FC 

Regression p-1 SCM 𝑆𝑆𝐶𝐶𝑆𝑆
𝑃𝑃 − 1

 
𝑆𝑆𝐶𝐶𝑆𝑆
𝑆𝑆𝐶𝐶𝐸𝐸

 

Residual N-p SCE 
𝑆𝑆𝐶𝐶𝐸𝐸
𝑁𝑁 − 𝑝𝑝

  

Total N-1 SCT   
When R2 = 1, the Yi estimates coincide with the measurements while for R2 = 0 the data 

are not aligned at all. The coefficient of determination thus indicates the degree of alignment of 
the data with the regression model. Thus, for R2 = 0.8, 80% of the variation of the trials is explained 
by the model. 

However, in the presence of several explanatory variables, which is often the case for 
multiple regressions, the coefficient of determination naturally increases and does not allow for a 
significant comparison of different models [41] It is therefore usual to introduce and use the 
adjusted R2 criterion, R2 criterion, which is maximal when the error estimator. s2, equation 2.56, is 
minimal. 

𝑠𝑠2 =
𝑆𝑆𝐶𝐶𝐸𝐸
𝑁𝑁 − 𝑝𝑝

                 (2.56) 

R2 criterion is defined by:  

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛2 = 1 −

𝑆𝑆𝐶𝐶𝐸𝐸
𝑁𝑁 − 𝑝𝑝 

𝑆𝑆𝐶𝐶𝑇𝑇
𝑁𝑁 − 1

                          (2.57) 

The quality of the model will therefore be all the better if R2 criterion is close to î. 
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The different parameters of the model can also be analyzed statistically. The null 
hypothesis (H0) is then investigated for each of the coefficients, according to which they are 
harmful. To do this, the tic statistic which depends on the estimate of the standard deviation of 𝛽𝛽(𝚤𝚤)�  
, s(𝛽𝛽(𝚤𝚤))� is then calculated: 

𝑡𝑡𝑖𝑖 =
�̂�𝛽(𝑖𝑖)

𝑠𝑠(𝛽𝛽(𝚤𝚤))�               (2.58) 

However, this standard deviation is estimated from the diagonal terms cii of the dispersion matrix 
( 𝑋𝑋𝑋𝑋 
𝑡𝑡 )−1 : 

s(𝛽𝛽(𝚤𝚤))� = 𝜎𝜎�𝑐𝑐𝑖𝑖𝑖𝑖          (2.59) 

Let the variance of the residuals, 𝜎𝜎𝑖𝑖2, be the estimate of the experimental variance 

𝜎𝜎𝑖𝑖2 =
𝑆𝑆𝐶𝐶𝐸𝐸
𝑁𝑁 − 𝑝𝑝

           (2.60) 

This leads to the calculation of tic 

𝑡𝑡𝑖𝑖 =
�̂�𝛽(𝑖𝑖)
𝜎𝜎𝑖𝑖�𝑐𝑐𝑖𝑖𝑖𝑖

              (2.61) 

It is possible to show that, under (Ho), tic follows a student’s law with (N - p) degrees of 
freedom [41]. The property (H0) will then be rejected at the level of significance level α if: 

|𝑡𝑡𝑖𝑖| > 𝑡𝑡𝛼𝛼
2 ,𝑁𝑁−𝑝𝑝         (2.62) 

In equation 2.62, the critical value 𝑡𝑡𝛼𝛼
2 ,𝑁𝑁−𝑝𝑝 is the (1 -𝛼𝛼

2
) quantile of a student’s law with (N-

p) degrees of freedom. It is then possible to determine which coefficients should be kept. (2.62) 

Finally, the normality of the errors will be tested. To do this, the QQ-plot of the residuals 
gives information about the distribution of the residuals [41]. It is a question of ordering the 
residuals E in an increasing manner. Let 𝐸𝐸�  be the vector of errors with 𝑒𝑒1 � the smallest residual and 
𝑒𝑒𝑁𝑁 ��  the largest: 

𝐸𝐸� = (𝑒𝑒1�   𝑒𝑒2�   𝑒𝑒3 � … 𝑒𝑒𝑁𝑁� )       (2.63) 

To each of these residues 𝑒𝑒𝚤𝚤 � is then associated the  𝑖𝑖
𝑁𝑁+1

 quantile qi of a normal distribution. 
The quantile function of a random variable is the inverse of its distribution function. For a normal 
distribution, the values of the quantile function are tabulated. The plot with quantiles qi on the x-
axis and ordered residuals 𝐸𝐸�  on the y-axis can then be drawn. “Figure 26” shows an example of 
the distribution of these residuals for the same case as above. 
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  If the residuals are normally distributed (as is assumed), the points should be aligned. The 
distribution on the example is therefore satisfactory. 

IV.5. Search for the optimum: 
The search for the optimum consists in analytically determining its coordinates and its nature on 
the experimental domain studied, from the model obtained. The quadratic form of this one is 
recalled equation 2.64 for k parameters: 

𝜂𝜂 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 + �𝛽𝛽𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖2 + �( � 𝛽𝛽𝑖𝑖𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖 ∗ 𝑥𝑥𝑗𝑗)
𝑘𝑘

𝑗𝑗=𝑖𝑖+1

𝑘𝑘−1

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

        (2.64) 

This can then be written in the following matrix form by noting x the vector of variables: 

𝜂𝜂 = 𝑏𝑏0 + 𝑥𝑥 ∗ 𝑏𝑏 
𝑡𝑡 + 𝑥𝑥 ∗ 𝐵𝐵 ∗ 𝑥𝑥             (2.65) 

𝑡𝑡  

 

 

 

 

 

 

 

 

 

 

 

Whatever the number of variables in the model, the coefficient b0 is defined as follows: 

𝑏𝑏0 = 𝛽𝛽0                (2.66) 

For a model taking into account k variables, the coefficients of equation 2.65 are, on the 
one hand for the vector b: 

𝑏𝑏 𝑡𝑡 = (𝛽𝛽1   𝛽𝛽2    …     𝛽𝛽𝑘𝑘)     (2.67) 

On the other hand, the matrix B is symmetric and of the following form: 

Figure 26. Example of residual analysis 
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𝐵𝐵 =

⎝

⎜
⎜
⎜
⎛

𝛽𝛽11
𝛽𝛽12
2

𝛽𝛽1𝐾𝐾
2

 𝛽𝛽22 
𝛽𝛽2𝐾𝐾

2

𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙  
𝛽𝛽𝐾𝐾−1 ,𝑘𝑘

2
𝛽𝛽𝑘𝑘𝑘𝑘 ⎠

⎟
⎟
⎟
⎞

       (2.68) 

The vector x groups the variables of the model: 

𝑡𝑡𝑚𝑚 = (𝑥𝑥1     𝑥𝑥2    … 𝑥𝑥𝑘𝑘)     (2.69) 

The determination of the stationary point, xj, of the quadric form is then obtained by 
solving the following equations: 

∀𝑖𝑖∈ [1    𝑘𝑘] ,               
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥𝑖𝑖

= 0          (2.70) 

Equation 2.70 then gives: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥1

= 𝛽𝛽1 + 2𝛽𝛽11 ∗ 𝑥𝑥𝑠𝑠1 + �𝛽𝛽1𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 = 0
𝑘𝑘

𝑖𝑖=2

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥2

.

.

.

= 𝛽𝛽2 + 2𝛽𝛽22 ∗ 𝑥𝑥𝑠𝑠2 + �𝛽𝛽2𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 = 0
𝑘𝑘

𝑖𝑖≠2

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥𝑘𝑘

= 𝛽𝛽𝑘𝑘 + 𝑘𝑘𝑘𝑘 ∗ 𝑥𝑥𝑠𝑠𝑘𝑘 + �𝛽𝛽𝑘𝑘𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 = 0
𝑘𝑘−1

𝑖𝑖≠𝑘𝑘

         (2.71) 

Thus, in matrix form, equation 2.71 becomes: 

𝑏𝑏 + 2𝐵𝐵 ∗ 𝑥𝑥𝑠𝑠 = 0             (2.72) 

The following relationship is immediately established, giving the coordinates of the point 
stationary point: 

𝑥𝑥𝑠𝑠 = −
1
2
𝐵𝐵−1𝑏𝑏             (2.73) 

The coordinates of the stationary point being known, it is then necessary to study its nature 
(maximum, minimum, inflection point).  
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Desirability: 

In the previous sections, it has been shown that the design of experiments was an interesting 
tool for the study of a criterion. However, it is quite possible to use the same methodology for the 
study of several criteria while implementing only one design of using only one experimental 
design. For that, the notion of desirability, which allows to aggregate in a single composite criterion 
several other criteria, will be used. This notion was introduced by E.C. Harrington [44] in 1965 
and was then developed thereafter, in particular by G. Derringer, [45] and [46]. 

It allows to gather criteria having different units through elementary desirability functions, 
adimensional and varying between 0 and 1. A desirability of 0, i.e., an elementary desirability 
taking the value a desirability of 0, i.e. an elementary desirability taking the value of 0, represents 
an unacceptable configuration for the selected property, whereas a desirability taking the value of 
1 indicates that an improvement of the selected property will not improve the studied product and 
thus represents the maximum desired for the criterion. 

To each criterion Yi (itch criterion) considered, an elementary desirability functions di will 
thus be associated. There are many functions of different types to transform the criteria into 
elementary desirability functions. We will retain here for the framework of our work the following 
transformation, presented in figure 27 which has the advantage of transposing easily in 
mathematical terms the management of properties, [46]. 

𝑑𝑑𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧0                           ↔ 𝑌𝑌𝑖𝑖 ≤ 𝑌𝑌𝑖𝑖 ,𝑝𝑝

�
𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖 ,𝑝𝑝
𝑌𝑌𝑖𝑖 ,𝑖𝑖 − 𝑌𝑌𝑖𝑖 ,𝑝𝑝

�
𝑖𝑖𝑖𝑖

     ↔

1                            ↔ 𝑌𝑌𝑖𝑖 ≥ 𝑌𝑌𝑖𝑖 ,𝑖𝑖

𝑌𝑌𝑖𝑖 ,𝑝𝑝 < 𝑌𝑌𝑖𝑖 < 𝑌𝑌𝑖𝑖 ,𝑖𝑖              (2.74) 

With: 

 𝑌𝑌𝑖𝑖 ,𝑝𝑝: floor value below which the criterion is not suitable (di = 0). 
 𝑌𝑌𝑖𝑖 ,𝑖𝑖: target value above which the criterion is very satisfactory (di = 1), 
 rig: parameter modifying locally the importance of an increase of the criterion for the 

considered elementary desirability.  



 60 

For rig > 1, only an improvement of the criterion around 1a, target value will be influential, 
whereas for rig < 1 it is the improvement of the criterion around the bottom value which will be 
significant. 

 

 

 

 

 

 

The set of elementary desirability functions is then assembled into a composite desirability, 
D, defined by:  

𝐷𝐷 = �Π𝑑𝑑𝑖𝑖
𝜔𝜔𝑖𝑖�

1
∑𝜔𝜔𝑖𝑖          (2.75) 

The 𝜔𝜔𝑖𝑖 parameters allow to weight the relative importance of the different elementary 
desirability in the global criterion, i.e., to privilege the importance of some of the criteria. 

It is of course quite possible to adapt the proposed mathematical transformation to the   
problem under study, in particular by reversing the positions of the target and floor values. 

By means of this method, it will thus be possible to implement simply design of 
experiments for the study of composite criteria without having to increase the number of tests to 
be carried out. The methodology of the design of experiments can thus constitute an effective tool 
to carry out a complete study leading to an optimal setting of parameters for a multi-criteria 
objective.   

Figure 27. Desirability 
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Chapter III 
Optimization Algorithms and MANFIS 
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I. Introduction: 
One of the difficult issues that underpin a wide range of machine learning methodologies, 

from logistic regression model fitting to artificial neural network training is determining the 
appropriate approach, and this is where optimization comes in since it is a valuable tool for 
decision making and understanding physical systems. An optimization problem is a mathematical 
task of selecting the best solution among all available options. This chapter will go through several 
optimization issues and algorithms for solving them. 

II. Optimization: 
A branch of applied mathematics whose ideas and methods are used to answer quantitative 

issues in fields such as physics, biology, engineering, and economics. Questions of maximizing or 
minimizing functions that arise in diverse areas can be answered using the same mathematical 
methods. The objective of a common optimization issue is to identify the values of controllable 
elements controlling the behavior of a system that maximizes production or reduces waste. The 
simplest issues include functions (systems) of a single variable (input factor) and may be addressed 
using differential calculus [47]. 

II.1. Optimization methodology: 

a. Model Construction: 
The first stage in the optimization process is to build a suitable model; modeling is the process 

of defining and describing the problem's objective, variables, and constraints in mathematical 
terms. 

 An objective is a quantifiable measure of the system's performance that we aim to decrease 
or maximize.  

 The variables or unknowns are the system components for which we seek to determine 
values.  

 The constraints are the functions that explain the connections between the variables and 
specify the variables' possible values. 
 

b. Determining the Problem Type: 
The second phase in the optimization process is selecting which optimization category the model 
belongs to. 
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III. Types of Optimization Problems: 
Because techniques for addressing optimization issues are adapted to a certain type of problem, 

categorizing an optimization model is a key stage in the optimization process. Below are listed a 
few different sorts of optimization problems [48]. 

 

a) Continuous Optimization versus Discrete Optimization: 

Models with discrete variables result in discrete optimization problems, whereas 
models with continuous variables result in continuous optimization problems. Continuous 
optimization issues are typically easier to solve than discrete optimization problems; the 
smoothness of the functions implies that the values of the objective function and constraint 
function at a spot xx may be exploited to extrapolate information about points in XX’s 
area. Because many discrete optimization techniques yield a succession of continuous 
subproblems, continuous optimization algorithms are significant in discrete optimization. 

 

b) Unconstrained Optimization versus Constrained Optimization: 
Unconstrained optimization issues emerge directly in many practical applications; they 

also develop as a result of the reformulation of constrained optimization problems in which the 
constraints are replaced by a penalty element in the objective function. Constrained 
optimization issues come from applications with explicit variable restrictions. The variables' 
constraints might range from basic boundaries to systems of equalities and inequalities that 
describe intricate interactions between the variables.  

Constrained optimization problems are characterized further based on the nature of the 
constraints (e.g., linear, nonlinear, convex) and the smoothness of the functions (e.g., 
differentiable or non-differentiable). 

 
c) None, One, or Many Objectives: 

The purpose of a feasibility problem is to discover values for variables that fulfill the 
restrictions of a model with no specific goal to optimize. Complementarity issues are common 
in engineering and economics. The objective is to identify a solution that meets the 
complementarity requirements.  

When optimum judgments must be made in the context of trade-offs between two or more 
competing objectives, multi-objective optimization issues arise. In reality, issues with multiple 
objectives are frequently recast as single-objective problems by producing a weighted mixture 
of the distinct objectives or by substituting restrictions for parts of the objectives. 
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d) Deterministic Optimization versus Stochastic Optimization: 
It is assumed in deterministic optimization that the data for the given issue are accurate. 

However, for many real-world issues, the data is inaccurate for several reasons. The first 
explanation is due to an inaccuracy in measuring. The second and more basic reason is that 
certain data reflect future knowledge that cannot be known with confidence.  

The uncertainty is integrated into the model in optimization under uncertainty, also known 
as stochastic optimization. When the parameters are only known within specific limitations, 
robust optimization techniques can be utilized; the objective is to develop a solution that is 
viable for all data and optimum in some way (e.g.  Stochastic optimization models) 

 

IV. Optimization Taxonomy: 
Shown here are two perspectives; 

“Figure 28” focused mainly on the subfields of deterministic optimization.  

“Figure 29” focused on the meta-heuristic algorithms (a high-level problem-independent 
algorithmic framework that provides a set of guidelines or strategies to develop heuristic 
optimization algorithms). 
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Figure 28 subfields of Deterministic Optimization 
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IV.1. Optimization Algorithms: 

Several types of optimization algorithms may be used to solve optimization issues, as well 
as numerous ways to aggregate and summarize them. One method of categorizing optimization 
algorithms is based on the quantity of information accessible about the target function being 
optimized, which can then be exploited and harnessed by the optimization process. In general, the 
more information is known about the target function, the easier it is to optimize the function if the 
knowledge can be successfully employed in the search [49]. 

Perhaps the most significant distinction in optimization algorithms is whether or not the 
objective function can be distinguished at a location. That is, whether or not the function's first 

Figure 29. Meta-heuristic Optimization Algorithms Chart 
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derivative (gradient or slope) can be computed for a given potential solution. This divides 
algorithms between those that can and cannot use the derived gradient information. 
  And from that the following has been established:  

A. Differentiable Objective Function: 

A differentiable function is one whose derivative can be determined at any point in the 
input space. A function's derivative at a given value is the pace or quantity of change in the 
function at that moment. It is commonly referred to as the slope. 

 

 First-Order Derivative: The slope or rate of change of an objective function at a particular 
position. The gradient is the derivative of a function having more than one input variable 
(e.g., multivariate inputs). 

 Gradient: A multivariate continuous objective function's derivative. A derivative for a 
multivariate objective function is a vector, and each element in the vector is referred to as 
a partial derivative, or the rate of change for a specific variable at the point assuming all 
other variables remain constant. 

 Partial Derivative: A component of a multivariate objective function's derivative. We may 
compute the derivative of the objective function's derivative, which is the rate of change of 
the rate of change in the objective function. This is known as the second derivative. 

 Second-Order Derivative: The rate at which the objective function's derivative changes. 
This is a matrix and is known as the Hessian matrix for a function that accepts numerous 
input variables. 

 Hessian matrix: The second derivative of a function with two or more input variables. 
Calculus may be used to optimize simple differentiable functions. Typically, the objective 
functions of interest cannot be solved analytically. 

Among the algorithms that take advantage of gradient information are: 

1) Bracketing Algorithms: 
Bracketing optimization algorithms are designed for optimization problems with a single input 

variable where the optima are known to exist within a certain range; they can quickly travel the 
known range and discover the optima even though they presume that a single optima exists 
(referred to as unimodal objective functions). 

Some examples of bracketing algorithms: 
• Fibonacci Search 
• Golden Section Search 
• Bisection Method 
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2) Local Descent Algorithms: 
Local descent optimization techniques are designed for situations with several input variables 

and a single global optimum. The “line search” method is the most common example of a local 
descent algorithm. The line search method has various versions (e.g., the Brent-Dekker algorithm), 
but the technique typically includes selecting a direction to travel in the search space, then doing 
a bracketing type search along a line or hyperplane in the chosen direction. This technique is 
continued until no more advancements are possible. The issue is that optimizing each directional 
motion in the search space is computationally costly. 
 

3) First-Order Algorithms: 

The first gradient is explicitly used in first-order optimization algorithms to pick the direction 
to travel in the search space. Unlike "local descent algorithms," which perform a full line search 
for each directional move, the procedures involve first calculating the gradient of the function, 
then following the gradient in the opposite direction using a step size, which is a hyperparameter 
that controls how far to move in the search space. A search that is too tiny will take a long time 
and may become stuck, whereas a search that is too large would zig-zag or bounce about the search 
area, missing the optima entirely. 

First-order algorithms are often known as gradient descent, with more specific names relating 
to slight modifications to the technique, such as: 
 Gradient Descent 
 Momentum 
 Adagrad 
 RMSProp 
 Adam 

 
The gradient descent technique also serves as a foundation for the popular stochastic variant 

of the approach, Stochastic Gradient Descent (SGD), which is used to train artificial neural 
network (deep learning) models. The key distinction is that the gradient is appropriated rather than 
explicitly generated, utilizing prediction error on training data, such as one sample (stochastic), all 
samples (batch), or a limited portion of training data (mini-batch). 

Extensions aimed to speed up the gradient descent algorithm (momentum, for example) may 
and are widely employed with SGD. 
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a. Gradient Descent: 

Gradient descent is a first-order optimization process that is based on a loss function's first-
order derivative. It determines how the weights should be changed so that the function can attain 
a minimum. Backpropagation transfers the loss from one layer to the next, and the model's 
parameters, also known as weights, are updated based on the losses to minimize the loss. 

Algorithm:  

𝜃𝜃 = 𝜃𝜃 − 𝛼𝛼 ∗ ∆𝑗𝑗(𝜃𝜃) 

Benefits:  

Simple computation, to put into action and grasp. 

Disadvantages: 

 Local minima may be used to trap. 
 After computing the gradient on the entire dataset, the weights are modified. If the dataset 

is too vast, it may take years to reach the minima. 
 Calculating gradient on the entire dataset necessitates a considerable amount of memory. 

 

b. Stochastic Gradient Descent: 

Gradient Descent is a variation. It attempts to update the model's parameters more regularly. 
The model parameters are changed after each training example's loss computation. As a result, if 
the dataset comprises 1000 rows, SGD will update the model parameters 1000 times in one dataset 
cycle, rather than once as in Gradient Descent. [50] 

Algorithm: 

𝜃𝜃 = 𝜃𝜃 − 𝛼𝛼 ∗ ∆𝑗𝑗(𝜃𝜃; 𝑥𝑥𝑖𝑖;𝑦𝑦𝑖𝑖) 

where {xi, yi} are the training examples. 

Advantages: 

 As a result of frequent modifications to model parameters, the model converges in less time. 
 Less memory is required since the values of loss functions are not stored. 
 New minima’s are possible. 

Disadvantages: 

 Model parameters have a high degree of variation. 
 It is possible to shoot even after reaching global minima. 
 To achieve the same convergence as gradient descent, the learning rate must be gradually 

reduced. 
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c. Mini-Batch Gradient Descent: 

It outperforms all other gradient descent techniques. It outperforms both SGD and 
traditional gradient descent. After each batch, it changes the model parameters. As a result, the 
dataset is separated into batches, and the parameters are updated after each batch. 

Algorithm: 

𝜃𝜃 = 𝜃𝜃 − 𝛼𝛼 ∗ ∆𝑗𝑗(𝜃𝜃;𝐵𝐵𝑖𝑖) 

Where {Bi} are the batches of training examples. 

Benefits: 

 Updates the model parameters often and has reduced volatility. 
 Memory requirements are moderate. 

 
4) Second-Order Algorithms: 
The Hessian is explicitly used in second-order optimization methods to pick the direction to 

travel in the search space. These approaches are only applicable to objective functions that can be 
computed or estimated using the Hessian matrix. Newton's Method and The Secant Method are an 
example of second-order optimization procedures for univariate objective functions. 

Quasi-Newton Approaches are second-order methods for multivariate objective functions. 

• Quasi-Newton Method 
There are several Quasi-Newton Methods, which are usually named after the algorithm's creators, 
such as: 

• Davidson-Fletcher-Powell 
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
• Limited-memory BFGS (L-BFGS) 

 

B. Non-Differential Objective Function: 

Optimization techniques that employ the objective function's derivative are fast and efficient. 
However, there are some objective functions for which the derivative cannot be determined, 
usually, because the function is complicated for several real-world reasons. Or the derivative can 
be calculated in some but not all parts of the domain, or it is not a reliable guide. 

The following are some challenges with objective functions for the classical algorithms 
mentioned in the preceding section: 
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• There is no analytical description of the function (e.g., simulation). 
• Several global optimums (e.g., multimodal). 
• Evaluation of stochastic functions (e.g., noisy). 
• Objective function with discontinuity (e.g., regions with invalid solutions). As such, there 

are optimization algorithms that do not expect first- or second-order derivatives to be 
available. 

These algorithms are frequently referred to as black-box optimization algorithms since they make 
little or no assumptions about the objective function (in comparison to traditional approaches). 

• Among these algorithms we find: 
 

1) Stochastic Algorithms: 

Stochastic optimization techniques employ randomization in the search phase for objective 
functions whose derivatives cannot be determined. Unlike deterministic direct search approaches, 
stochastic algorithms often need much more sampling of the objective function but are capable of 
dealing with difficulties including false local optima. 

Stochastic optimization algorithms include: 

• Simulated Annealing 
• Evolution Strategy 
• Cross-Entropy Method 

 
2) Population Algorithms: 

Population optimization algorithms are stochastic optimization algorithms that keep a pool (a 
population) of candidate solutions to sample, explore, and narrow in on an optima. This sort of 
algorithm is meant for more difficult objective problems with noisy function evaluations and 
several global optima (multimodal), when finding a good or good enough solution is difficult or 
impossible using existing approaches. 

The pool of possible solutions increases the search's resilience, boosting the possibility of 
overcoming local optima. Algorithms of this type are intended for more challenging objective 
problems that may have noisy function evaluations and many global optima (multimodal), and 
finding a good or good enough solution is challenging or infeasible using other methods. 

Examples of population optimization algorithms include: 

• Genetic Algorithm 
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• Differential Evolution 
• Particle Swarm Optimization 

 
3) Direct Algorithms: 

Direct optimization procedures are used for objective functions that do not have 
derivatives. The algorithms are deterministic techniques that frequently assume the goal function 
has a single global optimum, for example, unimodal. Direct search methods are often known as 
"pattern searches" since they may explore the search space using geometric forms or judgments, 
such as patterns. Gradient information is derived directly from the objective function's outcome of 
assessing the relative difference between scores for points in the search space. These direct 
estimations are then utilized to select a search direction and triangulate the location of the optima. 
Examples of direct search algorithms: 

• Cyclic Coordinate Search 
• Powell’s Method 
• Hooke-Jeeves Method 
• Nelder-Mead Simplex Search 
• Neural Network  

 
In This Part we'll go through the principles of neural networks in detail. starting by artificial 

neural networks and how they are inspired by the biological neural networks in human bodies. 
Following that, we'll look at the classic Perceptron method and its place in neural network history. 
Finally, we'll go through the four components that every neural network need. 

V. Neural Networks: 
The adjective form of "neuron" is "neural," and "network" suggests a graph-like structure; 

hence, an "Artificial Neural Network" is a computer system that aims to emulate (or is inspired 
by) the neural connections in our nervous system. "Neural networks" or "artificial neural systems" 
are other terms for artificial neural networks. Artificial Neural Networks are commonly 
abbreviated as "ANN" or simply "NN." 

To be termed a NN, a system must have a labeled, directed network structure with each 
node doing some basic computation. A directed graph, according to graph theory, consists of a 
collection of nodes (i.e., vertices) and a set of connections (i.e., edges) that connect pairs of nodes. 
Figure 1 is an example of such a NN graph. 

The network below is shown with inputs. Each link transports a signal via the network's 
two hidden levels. The output class label is computed by a final function. 

Each node does a basic calculation. Each link then transports a signal from one node to the 
next, tagged with a weight indicating the degree to which the signal is amplified or lessened.  
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A system is called an Artificial Neural Network if it has a graph structure (as shown in 
Figure 30) and connection weights that can be changed using a learning algorithm. 

IV.6. Relation to Biology: 
Brains are made up of around 10 billion neurons, each of which is linked to approximately 

10,000 other neurons. The soma is the neuron's cell body, where inputs (dendrites) and outputs 
(axons) join one soma to another (Figure 31). 

 
 
 
 
 
 
 
 

At their dendrites, neurons receive electrochemical input from other neurons. If these 
electrical inputs are strong enough to activate the neuron, the stimulated neuron sends the signal 
via its axon to the dendrites of other neurons. These connected neurons may also fire, so continuing 
the message-passing process. 

Figure 31. The structure of a biological neuron. Neurons are connected to other neurons 
through their dendrites and neurons. 

Figure 30. A simple neural network architecture 
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The main message here is that firing a neuron is a binary activity – the neuron either fires 
or does not fire. There are no distinct "levels" of fire. Simply expressed, a neuron will fire only if 
the total signal received at the soma reaches a certain threshold. 

ANNs, on the other hand, are simply inspired by what we know about the brain and how it 
functions. The purpose of deep learning is not to duplicate how brains function, but rather to take 
what we know and use it to draw similarities in our own work "Seek inspiration". 

IV.7. Neural Network Components: 
1. Data: The information required by the neural network. 
2. Model: A neural network. 
3. Objective Function: Determines how near our model's output is to the predicted one. 
4. Optimization Algorithm: Improving model performance using a trial-and-error cycle 

IV.8. Artificial Models: 
Starting with a simple NN in (Figure 32) that does a simple weighted sum of the inputs. 

The inputs to the NN are the values x1, x2, and x3, which generally equate to a single row (i.e., data 
point) from our design matrix. The bias, represented by the constant number 1, is considered to be 
included in the design matrix. These inputs may be thought of as the NN's input feature vectors. 

This weighted total is then processed by the activation function to determine whether or 
not the neuron fires. 

In practice, these inputs might be vectors that are utilized to quantitatively measure the 
contents of a picture in a systematic, specified manner. These inputs are the raw pixel intensities 
of the pictures themselves in the context of deep learning [51]. 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 32. A simple NN that takes the weighted sum of the input x and 

weights w. 
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A weight vector connects each x to a neuron. W is made up of w1, w2, wn, which means 

that for each input x, there is a corresponding weight w. 
Finally, the output node on Figure 32's right takes the weighted sum, applies an activation 

function f (used to decide whether or not the neuron "fires"), and outputs a value. When the results 
are expressed numerically, three forms are often found: 

 
𝑓𝑓(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤22 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 ) 

 

𝑓𝑓(�𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

) 

 
•Or simply                                     𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛)          where         𝑛𝑛𝑛𝑛𝑛𝑛 =  (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 ) 
 
Regardless of how the output value is written, a weighted sum of inputs is taken and an activation function 
f is applied  

 
 
 
 
 
 
 
 
 
 
 
 
 

IV.9. Architectures of Feedforward Networks: 
While there are other NN topologies, the feedforward network is the most prevalent, as 

seen in Figure 33. A connection between nodes in this design is only permitted from nodes in layer 

Figure 33. A feedforward neural network with three input nodes, a hidden layer of two 
nodes, a second hidden layer of three nodes, and a final output layer of two nodes. 
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I to nodes in layer i+1 (hence the term, feedforward). Backward or inter-layer connections are not 
permitted. Recurrent neural networks are formed when feedforward networks add feedback 
connections (output connections that feed back into the inputs). 

Generally, a series of numbers is used to quickly and simply express the number of nodes 
in each tier when describing a feedforward network. The network in Figure 33 is a 3-2-3-2 
feedforward network, for example: 
 Layer 0 has three inputs, which are our xi values. These might be an image's raw pixel 

intensities or a feature vector derived from the picture. 
 Layers 1 and 2 are hidden layers with two and three nodes, respectively. 
 Layer 3 is the output layer, also known as the visible layer, and it is where the network's 

total output categorization is acquired. The output layer normally contains the same number 
of nodes as class labels, one for each conceivable output [51]. 

IV.10. Neural Learning: 
The process of altering the weights and connections between nodes in a network is referred 

to as neural learning. Learning is defined biologically by Hebb's principle: 
When an axon of cell A is close enough to excite cell B and regularly or consistently fires 

it, some development process or metabolic change occurs in one or both cells, increasing A's 
efficiency as one of the cells firing B.  

IV.11. Neural Networks Application: 
Neural Networks may be used in both supervised and unsupervised learning tasks, as long 

as the suitable design is applied. To mention a few, common applications of NN include 
classification, regression, clustering, vector quantization, pattern association, and function 
approximation. 

V. Fuzzy Logic: 
The term "fuzzy" refers to things that are vague or equivocal. In the actual world, we 

frequently meet situations in which we are unable to tell whether a condition is true or untrue; its 
fuzzy logic gives extremely significant flexibility for thinking. In this method, we may examine 
any situation's errors and uncertainties. 

In the Boolean system, truth value is represented by 1.0 as the absolute truth value and 0.0 
as the absolute false value. However, there is no logic in the fuzzy system for absolute truth and 
absolute false value. However, with fuzzy logic, there is an intermediate value that is both partially 
true and partially false. 
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V.1. Fuzzy Logic Architecture: 
Its architecture is divided into four sections: 

 Rule Base: It comprises the collection of rules and IF-THEN conditions offered by experts 
to manage the decision-making system based on linguistic data. Recent advances in fuzzy 
theory provide various viable strategies for designing and adjusting fuzzy controllers. The 
majority of these advancements lower the number of fuzzy rules. 

 Fuzzification: It is used to turn inputs, such as crisp integers, into fuzzy sets. Crisp inputs 
are the exact inputs measured by sensors and supplied into the control system for 
processing, such as temperature, pressure, rpm, and so on. 

 Inference Engine: It calculates the degree of matching of the current fuzzy input with 
regard to each rule and picks which rules to fire based on the input field. The control actions 
are then formed by combining the fired rules. 

 Defuzzification: It is used to turn the inference engine's fuzzy sets into a crisp value. There 
are numerous defuzzification strategies available, and the most appropriate one is 
employed in conjunction with a certain expert system to decrease error. 

Figure 34. Graph representing “Fuzzy Logic” 
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V.2. Definition of a membership function: 
A graph that shows how each point in the input space is transformed to a membership value 

between 0 and 1. Input space is also known as the universe of discourse or universal set (u), and it 
encompasses all of the conceivable items of concern in any application. 

Fuzzifiers are classified into three types: 

• Fuzzifier for singletons 
• Fuzzifier using Gaussian distribution 
• Fuzzifiers that are trapezoidal or triangular 

V.3. Fuzzy Control: 
It is a method of incorporating human-like reasoning into a control system. that intends to 

provide exact reasoning, rather it is intended to provide acceptable reasoning. It may mimic human 
deductive reasoning, which is the method by which humans draw conclusions from what they 
know. With the use of fuzzy logic, any uncertainties may be readily dealt with. 

V.4. The Benefits of a Fuzzy Logic System: 

• Can function with any sort of input data, whether it is inaccurate, distorted, or noisy. 
• Fuzzy logic is based on set theory mathematical principles, and the rationale behind it is 

relatively straightforward which is simple to build and comprehend. 
• Because it is similar to human thinking and decision-making, it gives a very efficient 

solution to difficult issues in many aspects of life. 
• Because the methods may be explained with minimal data, memory is not required. 

 

Figure 35. Architecture of Fuzzy Logic 
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V.5. The Drawbacks of Fuzzy Logic Systems: 

• Many scholars offered many approaches to solving a specific problem using fuzzy logic, 
resulting in uncertainty. There is no systematic strategy to using fuzzy logic to tackle a 
specific problem. 

• In most circumstances, proving its properties is difficult or impossible since we never 
acquire a mathematical description of our technique. 

• Because fuzzy logic operates on both exact and imprecise input, accuracy is frequently 
compromised. 

V.6. Applications: 

• Used in the aerospace industry to regulate the altitude of spacecraft and satellites, and in 
automobile systems to manage speed and traffic. 

• Decision-making support systems and personal evaluation in major corporations. 
• Used in the chemical industry to manage the pH, drying, and chemical distillation 

processes. 
• Natural language processing and a variety of intense AI applications. 
• Fuzzy logic is utilized in conjunction with Neural Networks because it simulates how 

humans make judgments, only much faster. It is accomplished by data aggregation and 
transformation into more relevant data by producing partial truths as Fuzzy sets. 

VI. Multi Adaptive Neuro Fuzzy Inference System (MANFIS): 
MANFIS is an extension of the neuro-fuzzy system ANFIS [52], to produce multiple 

outputs. A neuro-fuzzy system can serve as a nonparametric regression tool, which models the 
regression relationship without reference to any pre-specified functional form. Originally, ANFIS 
could only produce a single output but MANFIS aggregates many independent ANFIS to obtain 
multiple outputs [53]. The architecture of MANFIS is depicted in “Figure 36-a”. 

 
Figure 36. The artchitechteures of adaptive neuro fuzzy networks, a) MANFIS, b) ANFIS 
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The ANFIS is a combination of fuzzy logic and neural network algorithm, initially proposed in the 
early 90s by J S Jang [52]. It combines the greatest features of both because it offers fuzzy logic 
qualitative analysis as well as learning skills. The Hybrid Learning Rule is applied by ANFIS to 
optimize the final inference system through NN’s Training. ANFIS is equivalent to TAKAGI 
SUGENO first-order system [52]. It is represented by the following two IF-THEN rules:  

1𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛: 𝐼𝐼𝐼𝐼 𝑥𝑥𝑥𝑥𝑥𝑥𝐴𝐴1𝑎𝑎𝑛𝑛𝑎𝑎𝑦𝑦𝑥𝑥𝑥𝑥𝐵𝐵1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓1 = 𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1 (1) 

2𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛: 𝐼𝐼𝐼𝐼 𝑥𝑥𝑥𝑥𝑥𝑥𝐴𝐴1𝑎𝑎𝑛𝑛𝑎𝑎𝑦𝑦𝑥𝑥𝑥𝑥𝐵𝐵1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓2 = 𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2 (2) 

Where 𝑥𝑥 and 𝑦𝑦 denote system inputs.𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖 are fuzzy subsets coded by fuzzy membership functions 
(MFs), and 𝑓𝑓𝑖𝑖 are system outputs within the fuzzy layer is based on fuzzy IF-THEN rules.𝑝𝑝1and𝑓𝑓1 
are linear adaptive parameters tuned during the training phase. 

The ANFIS flowchart is shown in in “Figure 36-b”. It consists of five layers where three layers 
are fixed nodes schematized by circles, and two adaptive layers schematized by squares. 

Fuzzification layer:  Subset of adaptive nodes. Expressing the fuzzy membership conditions of 
each input where: 

𝑂𝑂𝑖𝑖1 = 𝑈𝑈𝐴𝐴𝑖𝑖(𝑥𝑥) (3) 

Where: 𝑥𝑥denotes the input to the node 𝑥𝑥; 𝐴𝐴𝑖𝑖 denotes the linguistic label associated with the node 𝑥𝑥 ; 
and 𝑈𝑈𝐴𝐴𝑖𝑖  is a membership function (MF). In this study, the Gaussian membership function given by 
(4) is used:   

𝑈𝑈𝐴𝐴𝑖𝑖(𝑥𝑥) = 𝑛𝑛−
1
2�
𝑥𝑥−𝑐𝑐
𝜎𝜎 �

2

 (4) 

Gaussian MF is fully defined by two nonlinear parameters 𝑐𝑐 and 𝜎𝜎 where 𝑐𝑐 is the MF center and 
𝑐𝑐 determines Gaussian MF width. These nonlinear parameters are known as premise parameters 
which are adjusted during the training phase.  

Product layer: Subset of fixed nodes, producing the firing strengths of the rules. Acting as a simple 
multiplier of received signals from the previous layer as: 

𝑊𝑊𝑖𝑖 = 𝑈𝑈𝐴𝐴𝑖𝑖(𝑥𝑥) × 𝑈𝑈𝐵𝐵𝑖𝑖(𝑥𝑥) (5) 

Normalization layer: Subset of fixed nodes that normalize each weight𝑊𝑊𝑖𝑖, by dividing it according 
to the total of all the weights associated with each rule as follows: 

1 2
,     1,2.iW

W i
W W

= =
+  (6) 

�̄�𝑊 is called normalized firing strengths[52,53]. 
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Defuzzification layer: The output of each node given by (7) is the product of each normalized 
firing strength and a first-order polynomial: 

𝑂𝑂𝑖𝑖4 = 𝑊𝑊𝑓𝑓𝑖𝑖 = 𝑊𝑊𝑖𝑖(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖) (7) 

Where { }, ,    i i ip q r are the consequent parameters to be defined during the training phase [52,54]. 

Output layer: is a single of fixed nodes that sums all received information from the previous layer 
and delivers the network output, such as [52,53]: 

𝑂𝑂𝑖𝑖5 = ∑𝑊𝑊𝑓𝑓𝑖𝑖 (8) 

In the present research, a hybrid training algorithm is used to adapt the network parameters. The 
least-squares approach and the backpropagation gradient descent method are combined in the 
hybrid algorithm and the backpropagation gradient descent method to optimize premise and 
consequent parameters [55, 56]. 
 

VI.1. Performance Criterions: 
In this work, both training and testing errors can be evaluated by Mean Squared Error(𝑀𝑀𝑀𝑀𝑇𝑇) 

[55], and correlation Coefficient (R²) [53], expressed by (9-10),for the MANFIS model validation 
and to determine the performance of the models predicted by the output values of the 
corresponding experimental dataset. 

𝑅𝑅𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=0           (9) 
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Where:  

 n is the number of samples;  
 Xi and Yi are the measured and predicted values respectively.  
 

iY  is the mean value of the predicted data. 

ANFIS can be used for classification, approximation of highly nonlinear functions, on-line 
identification in discrete control system and to predict a chaotic time series. And can serve as a 
basis for constructing a set of fuzzy ‘if–then’ rules with appropriate membership function to 
generate the stipulated input–output pairs. 
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I. Introduction: 
Characterizing and understanding the performance of FFF-processed PLA components is 

critical, and many shortcomings may be mitigated by carefully selecting processing settings. 

This dissertation, aims to characterize the mechanical characteristics in terms of yield 
Stress, Young Modulus, and so on to evaluate the impacts of various printing settings on the 
properties of PLA printed components using the FFF technique in conjunction with a Central 
Composite Design. 

Another goal of this project is to determine the ideal combination of printing settings to 
increase the printed part's strength. While using Desirability function prediction to do so. To 
prevent producing a large number of specimens, a Central Composite Design was used, which 
refers to how parameters are assigned to various conditions. 

II. Specimen manufacturing:  

The specimen was designed with the precise shape and dimensions by the SolidWorks 
software according to the ASTMD638 Type IV Standard and exported to an STL file so that it 
could be read and interpreted by the printer parameterization software. The Repetier-Host (Cura) 
software was used in this project to generate G-Code so that it could be printed. The “ANYCUBIC 
I3 MEGA” printer was used to print all of the specimens. 

 

 

 Figure 37. The 30 Printed specimens 
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III. Tensile testing and specimens: 
The tensile specimens used in this study were printed according to ASTM D-638 "Type 

IV" standard test procedure for plastics and composites, and are dumbbell-shaped as shown in 
Figure 38.  

To characterize the mechanical behavior of PLA components subjected to tensile stresses, 
the elastic modulus (Young's modulus), and elastic limit (Yield stress), are computed. 
 

Table 10. ASTM D638 Type IV Specimen Dimensions 

 

 
 
 
 
 
 
 
 
 
 
 
 

IV. Materials and methods: 
The specimens for this investigation were made from PLA (Graphite Gray) Filament 

[BGRL7043425C], a commercial material developed and manufactured by the American company 
Paramount 3D in accordance with ISO9001 standards (Fig. 39 A) and printed with “ANYCUBIC 
I3 MEGA” printer. (Fig. 39 B) 

Material discerption  

 Material: 100% virgin PLA  
  Color: Graphite Gray  
 Thickness: 1.75 mm 
 Spool Weight: 1.0 kg (2.2 lb.) 
 Spool Size: 2.25" ID / 7.75" OD / 2.25" Depth 
 Printing temperature: 190 - 220 C 

Technical Specification For the “ANYCUBIC I3 MEGA” printer 

 Technology: FDM Fused Deposition Modeling  
 Build Size: 210×210×205 (mm3) 
 Nozzle/Filament Diameter: 0.4 mm/1.75mm 
 Positioning Accuracy: X/Y 0.0125mm，Z 0.002mm 

Standard Type L0 L W0 W B G D R R0 

ASTMD 
638 IV 115 33 ± 

0.5 
19 ± 
6.4 

6 ± 
0.05 

3.2 ± 
0.4 

25 ± 
0.2 

64.5 
± 5 14 25 

Figure 38.  Geometrical drawing of specimens for tensile test. 
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 Print Speed: 20~100mm/s (suggested 60mm/s)  
 Operational Extruder Temperature: 260°C max 
 Slicer Software:  Cura 
 Software Input / Output Formats: STL, OBJ, DAE, AMF / GCode 
 Printer Dimensions: 405mm×410mm×453mm 

 

 

 

 

 

 

V. Experimental setup: 
The universal MTS Criterion Model43 machine, equipped with a 50 kN load cell and a 1 

mm/min displacement rate, was employed for these tensile tests once all the samples were printed. 
The tests are carried out for all 30 specimens after the setup is equipped and adjusted. 

Specifications of the MTS MODEL 43 
 Maximum Rated: 30 kN 
 Force Capacity: 6600 ibf 
 Maximum/Minimum Test Speed: 1020 / 40.16 mm/min 
 Position Resolution / Accuracy: 0.00006 mm / within ± 0.5% 
 Vertical Test Space: 1500 mm 
 Crosshead Travel: 1300 mm 
 Frame Height / Width / Depth: 2050/ 826 / 768 mm 
 Frame Weight: 305 kg 
 Speed Accuracy / Set speed < 0.01mm/min 
 Data Acquisition Rate: 1000 Hz 
 Motor & Drive System: AC Servo Motor 

Figure 39. Left “A” “ANYCUBIC I3 MEGA” printer, Right “B” PLA Filament used 
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Figure 40 Top “the MTS Criterion Model43”, Bottom “tensile test before and after the specimen rupture” 
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VI. Central Composite Design: 

To carry out the research, a design of experiment (DOE) based on the Central Composite 
approach was used, which is a robust optimization strategy for creating experiments to anticipate 
responses and optimize the FFF process parameters in terms of accuracy. Based on past research, 
printer setups, and material manufacturer recommendations, the parameters and levels given in 
“Table 11” were chosen for their high efficacy on mechanical qualities. Finally, layer height, fill 
density, printing velocity, and Nozzle temperature were chosen. 

 

Figure 41. All the printed specimens after the tensile test 
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Table 11. Factors and levels used for the DOE 

Parameters Lowest Level Highest Level Alpha - Alpha + 

Layer height 
(mm) 0.14 0.22 0.1 0.26 

Fill density (%) 30 50 20 60 

Velocity (mm/s) 48 58 43 63 

Nozzle 
temperature (C°) 199 213 192 220 

 

A Central Composite Design was used to assess the effect of the selected factors and levels 
using Design-Expert software for statistical analyses “Table 12”. 

Table 12. Central Composite Design array of DOE. 

Runs Infill Density Temperature  Printing 
Velocity  Layer Height  

1 40 206 53 0.18 
2 50 199 58 0.14 
3 30 199 58 0.14 
4 30 199 48 0.14 
5 50 213 58 0.14 
6 40 206 53 0.18 
7 40 220 53 0.18 
8 40 192 53 0.18 
9 40 206 53 0.18 

10 30 213 58 0.22 
11 40 206 53 0.1 
12 30 199 48 0.22 
13 50 213 58 0.22 
14 30 199 58 0.22 
15 30 213 48 0.22 
16 40 206 53 0.26 
17 50 213 48 0.22 
18 40 206 53 0.18 
19 40 206 53 0.18 
20 60 206 53 0.18 
21 20 206 53 0.18 
22 30 213 48 0.14 
23 50 199 48 0.22 
24 40 206 53 0.18 
25 50 213 48 0.14 
26 40 206 63 0.18 
27 50 199 58 0.22 
28 40 206 43 0.18 
29 50 199 48 0.14 
30 30 213 58 0.14 
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Table 13. Main constant printing parameters used in the experiments 

 

 

VII. Infill Type: 
Personalized bone scaffolds with unparalleled structural and functional features are now 

possible thanks to additive manufacturing (AM). The main problem is to realize such structures 
via melt-extrusion 3D printing and which infill to use, that’s why Specific biological and 
mechanical functionality, such as increased regeneration via enhanced cell migration and higher 
structural integrity, can be produced for scaffolds designed as temporary guiding structures for 
endogenous tissue regeneration using such a methodology. 

And that is how the gyroid structure was chosen in this work to be used as an infill, because 
according to [57] where the gyroid infill was used as an infill to print out scaffolds where they 
were tested mechanically and in conclusion the results reveal that gyroid scaffolds have high 
reliable mechanical properties. Dudescu et al. [58] determined that an increase in relative infill 
density had a beneficial effect on elastic modulus while the printing orientations did not. And that 
Gyroid infill doesn’t need more support structure 

 
The architecture of an open cell foam is represented by the gyroid Figure 42 “Middle”. 

Alan Schoen discovered it in 1970 [58,59] and it belongs to the class of triply periodic minimal 
surfaces (TPMS) [60]. The gyroid has a mean curvature of zero and is periodic in its three primary 
directions. Eq. (1) shows the implicit function, where “a” is a parameter for the size of the gyroid 
unit cell and “t” is the level parameter of the isosurface that may efficiently manage the relative 
density of the gyroid surface [61]: 
 

SIN(
2𝜋𝜋
𝑎𝑎
𝑥𝑥) COS �

2𝜋𝜋
𝑎𝑎
𝑦𝑦� + SIN �

2𝜋𝜋
𝑎𝑎
𝑦𝑦� COS �

2𝜋𝜋
𝑎𝑎
𝑧𝑧� + SIN �

2𝜋𝜋
𝑎𝑎
𝑧𝑧�COS �

2𝜋𝜋
𝑎𝑎
𝑥𝑥� = 𝑛𝑛       (1) 

 

NOZZLE 
Diameter 

INFILL 
PATERN 

SKIRT 
LAYER ORIANTAION 

1.75 Gyroid 2 Layers X-axis 

Figure 42. Left “Bone scaffolds”, Middle “Representation of Gyroid Infill IRL”, Right “Infill of one of the 
printed Specimens” 
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Figure 43 depicts the cut portion of the samples, which illustrates the varied density percent 
of Gyroid infill pattern that was applied in the slicer software to print the samples to clarify the 
specified parameters. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

VIII. Process of analysis: 
A file is obtained from the data logger when each test is completed. First, a file containing 

the force measured by the load cell and the displacement measured by the Crosshead. 

To obtain the defined mechanical properties such as young’s modulus (𝐸𝐸), yield strength 
(σ), maximum strength (σmax), Design Expert v13. Software is used to analyze the data. The results 
obtained from the experiments are presented in “Table 14”. Central Composite approach to 
experimental design is described below. The first step of the Central Composite method is to 
measure the quality characteristic that needs to be optimized. 

The output variable or response that is an important index on the quality of the part is called 
quality indicator. In this study, yield stress, and Young Modulus are the quality indicators. In the 
second step, the control of the test parameters that have significant effects on the quality are 
identified with the required number of tests and their levels. Then, an appropriate orthogonal table 
for the control parameters is selected after calculating the minimum number of experiments to be 
conducted considering the interactive effects. The experimental test conditions and the observed 
data are presented in “Table 14”. In order to obtain a certain young modulus, it is necessary to use 
optimization techniques to find the optimal process parameters. Desirability function can be 
conveniently used for these purposes, and therefore, the above methodologies are chosen to 
optimize the machining parameters in this work. 
 

Figure 43. Cut sections with Different % density in gyroid infill pattern. 
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The output response (y) can be predicted from the quadratic model described by the 
following equation: 

 
𝑌𝑌� = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 + 𝑎𝑎4𝑥𝑥4 + 𝑎𝑎11𝑥𝑥12 + 𝑎𝑎22𝑥𝑥22 + 𝑎𝑎33𝑥𝑥32   + 𝑎𝑎44𝑥𝑥42 + 𝑎𝑎12𝑥𝑥12 

+𝑎𝑎13𝑥𝑥13 + 𝑎𝑎14𝑥𝑥14     + 𝑎𝑎23𝑥𝑥23    + 𝑎𝑎24𝑥𝑥24  + 𝑎𝑎34𝑥𝑥34   +   𝑒𝑒 

 

Table 14. The experimental test conditions and the observed data 

Run Space 
Type 

Infill 
Density 

Tempera
ture 

Printing 
Speed 

Layer 
Height 

Young 
Modulus 

Yield 
Stress 

% C° mm/s mm GPa MPa 
        

1 Center 40 206 53 0.18 1.94635 13.211 
2 Factorial 50 199 58 0.14 2.20791 13.954 
3 Factorial 30 199 58 0.14 1.53071 10.118 
4 Factorial 30 199 48 0.14 1.53167 8.899 
5 Factorial 50 213 58 0.14 2.2375 11.814 
6 Center 40 206 53 0.18 1.94635 13.211 
7 Axial 40 220 53 0.18 1.96077 12.294 
8 Axial 40 192 53 0.18 1.93645 11.36 
9 Center 40 206 53 0.18 1.94635 13.211 
10 Factorial 30 213 58 0.22 1.74318 13.283 
11 Axial 40 206 53 0.1 2.01484 12.658 
12 Factorial 30 199 48 0.22 1.84257 13.625 
13 Factorial 50 213 58 0.22 2.00436 12.263 
14 Factorial 30 199 58 0.22 1.81758 12.578 
15 Factorial 30 213 48 0.22 1.76788 14.532 
16 Axial 40 206 53 0.26 2.15707 17.688 
17 Factorial 50 213 48 0.22 2.29542 16.527 
18 Center 40 206 53 0.18 1.94635 13.211 
19 Center 40 206 53 0.18 1.94635 13.211 
20 Axial 60 206 53 0.18 2.38375 13.492 
21 Axial 20 206 53 0.18 1.39515 9.501 
22 Factorial 30 213 48 0.14 1.59238 8.153 
23 Factorial 50 199 48 0.22 2.29424 14.729 
24 Center 40 206 53 0.18 1.94635 13.211 
25 Factorial 50 213 48 0.14 2.26241 14.588 
26 Axial 40 206 63 0.18 1.87821 10.687 
27 Factorial 50 199 58 0.22 2.29609 12.501 
28 Axial 40 206 43 0.18 1.95464 13.272 
29 Factorial 50 199 48 0.14 2.16411 15.798 
30 Factorial 30 213 58 0.14 1.54716 9.809 
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A. Effect of the printer parameters on young modulus: 
Figure 44 depicts the influence of infill density, Nozzle Temperature, Printing Speed, and 

Layer Height on Young Modulus. As seen in the image, Infill density has the greatest influence 
on Young Modulus, with the higher the density, the greater the increase in Young Modulus. While 
the remainder of the factors have minimal impact on young modulus, 

 
i) Model of young modulus Response: 
Design Expert v13. software was used to perform the quadrature model for the prediction 

of the output responses (young's module), which allows the analysis of variance (ANOVA) to 
extract the important factors that influence the response and to determine and evaluate the 
importance of the model coefficients and thus the contribution of each of the parameters on the 
output responses. 

 
The most important model coefficients are those whose value surpasses that of the standard 

Student's coefficient computed with a 5% error (p-value). If the probability (p-value) is less than 
0.05, the model is considered statistically significant (95 percent confidence). A low p-value 
suggests that the related response source is statistically significant. Another crucial variable is the 

Figure 44. The influence of infill density, Nozzle Temperature, Printing Speed, and Layer Height on Young 
Modulus 
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coefficient of determination R2, which quantifies the ratio of variance between the model and 
experiment outcomes. When this coefficient approaches unity, the model precisely fits the 
measurement findings of the expected output responses. 

The model coefficients, coefficient of determination, and ANOVA of the response for the 
Young's modulus are shown in Tables 15 and 16. According to the connection, Young Modulus is 
directly related to the four factors but mainly impacted by two “density and layer height”. 

 
ii) Final Equation in Terms of Coded Factors: 

Young Modulus = -17.536 + 0.0947 A -0.0815 B - 0.213 C + 34.753 D - 0.000081 AB - 0.000218 AC - 
0.149 AD - 0.0000724 BC - 0.144 BD - 0.0974 CD - 0.000166 A²- 0.000037 B² 0.00039 C² + 20.338 D² 

 

A-Infill Density B-Printing Temperature C-Printing Speed D-Layer Height 

The equation in terms of actual factors can be used to make predictions about the response 
for given levels of each factor.  

Table 15. Young Modulus Coefficients in Terms of Coded Factors 

Factor Coefficient 
Estimate Df Standard 

Error 
95% CI 

Low 
95% CI 

High VIF 

Intercept 1.95 1 0.0188 1.91 1.99  

A-Infill 
Density 0.2653 1 0.0094 0.2452 0.2853 1.0000 

B-Nozzle 
Temperatu

re 
-0.0077 1 0.0094 -0.0278 0.0123 1.0000 

C-Printing 
Speed -0.0216 1 0.0094 -0.0417 -0.0015 1.0000 

D-Layer 
Height 0.0530 1 0.0094 0.0329 0.0731 1.0000 

AB -0.0057 1 0.0115 -0.0303 0.0189 1.0000 

AC -0.0109 1 0.0115 -0.0355 0.0137 1.0000 

AD -0.0594 1 0.0115 -0.0840 -0.0348 1.0000 

BC -0.0254 1 0.0115 -0.0499 -0.0008 1.0000 

BD -0.0403 1 0.0115 -0.0649 -0.0157 1.0000 

CD -0.0195 1 0.0115 -0.0441 0.0051 1.0000 

A² -0.0166 1 0.0088 -0.0354 0.0022 1.05 

B² -0.0018 1 0.0088 -0.0206 0.0170 1.05 

C² -0.0098 1 0.0088 -0.0286 0.0089 1.05 

D² 0.0325 1 0.0088 0.0138 0.0513 1.05 



 94 

The coefficient estimate represents the expected change in response per unit change in 
factor value when all remaining factors are held constant. The intercept in an orthogonal design is 
the overall average response of all the runs. The coefficients are adjustments around that average 
based on the factor settings. When the factors are orthogonal the VIFs are 1; VIFs greater than 1 
indicate multi-collinearity. 

iii) Fit Summary: 

 
iv) Fit Statistics: 

Std. Dev. 0.0462  R² 0.9836 
Mean 1.95  Adjusted R² 0.9683 

C.V. % 2.37  Predicted R² 0.9055 
   Adeq Precision 32.5038 

The Predicted R² of 0.9055 is in reasonable agreement with the Adjusted R² of 0.9683; 
i.e., the difference is less than 0.2. 

Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The 
ratio of 32.504 indicates an adequate signal. This model can be used to navigate the design space. 

Table 16. ANOVA for Young Modulus Quadratic model 

Source Sum of Squares DF Mean Square F-value p-value  

Model 1.92 14 0.1368 64.21 < 0.0001 Significant 
A-Infill Density 1.69 1 1.69 792.37 < 0.0001 Significant 

B-Nozzle Temperature 0.0014 1 0.0014 0.6761 0.4238  

C-Printing Speed 0.0112 1 0.0112 5.27 0.0366 Significant 
D-Layer Height 0.0674 1 0.0674 31.63 < 0.0001 Significant 

AB 0.0005 1 0.0005 0.2414 0.6303  
AC 0.0019 1 0.0019 0.8924 0.3598  
AD 0.0565 1 0.0565 26.53 0.0001 Significant 
BC 0.0103 1 0.0103 4.82 0.0442 Significant 
BD 0.0260 1 0.0260 12.19 0.0033 Significant 
CD 0.0061 1 0.0061 2.85 0.1122  
A² 0.0075 1 0.0075 3.54 0.0794  
B² 0.0001 1 0.0001 0.0415 0.8413  

C² 0.0027 1 0.0027 1.25 0.2818  

D² 0.0290 1 0.0290 13.63 0.0022 Significant 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R²  
Linear < 0.0001  0.8933 0.8564  

2FI 0.0081  0.9390 0.8876  
Quadratic 0.0069  0.9683 0.9055 Suggested 

Cubic 0.0387  0.9881 0.5872 Aliased 



 95 

Residual 0.0320 15 0.0021    

Lack of Fit 0.0320 10 0.0032    

Pure Error 0.0000 5 0.0000    

Cor Total 1.95 29     

Factor coding is Coded. 
Sum of squares is Type III - Partial 

The Model F-value of 64.21 implies the model is significant. There is only a 0.01% chance 
that an F-value this large could occur due to noise. 

P-values less than 0.0500 indicate model terms are significant. In this case A, C, D, AD, 
BC, BD, D² are significant model terms. Values greater than 0.1000 indicate the model terms are 
not significant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

From the graph above, we notice that the Tendency of the experimental points aligns with 
the Model of young modulus response.  
 
 
 

Figure 45. Alignment of experimental points and predicted responses 



 96 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In these interaction plots, the slopes are not parallel. This interaction effect indicates that 
the relationship between “Fig 46 left” Infill density and Layer height strengthens young modulus 
the higher their value gets. “Fig 47” Young modulus is associated with the highest Nozzle 
temperature and layer height. However, in “Fig 46 Right” the two factors don’t have any impact 
on young modulus because the slope is slightly parallel. 
 

  

 

Figure 47. InteractionGraphs of Factors “B,D” 

Figure 46. Interaction graphs of Factors “Left “A,D”” “Right “B,C” 
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Figure 48 shows the influence of two parameters on the response simultaneously in the 
form of 3D graphs, while keeping the third parameter at the maximum value. 
It can be concluded that infill density had the most significant impact on young modulus, since a 
significant increase in YM can be seen upon increasing infill density in interaction with layer 
height. 

The interaction of layer height and nozzle temperature had a slight influence on young 
modulus; thus, the plotted surface area appeared almost flat. 

 
 

B. Effect of the printer parameters on Yield Stress: 
Figure 49 shows the influence of before mentioned printer’s parameters on Yield Stress. 

As seen in the graphs, Stress rises the more Infill density and layer height are higher. While nozzle 

Figure 48. 3D Graph of the simultaneous influence of “Left ‘Layer height and nozzle temperature’” and “Right 
‘layer height and infill density’” Both on young modulus 
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temperature has little impact on it, finally printing speed got the opposite effect on stress than infill 
density and layer height, since the faster the printing is the lower the stress gets 

i) Model of Yield Stress Response: 
The model coefficients, coefficient of determination, and ANOVA of the response for the 

Yield Stress are shown in Tables 17 and 18. According to the connection, Yield Stress is directly 
related to the four factors except “Nozzle Temperature”  

 
ii) Final Equation in Terms of Coded Factors: 

Yield Stress = -387.423 + 2.143 A + 2.839 B + 3.104 C – 209.64 D - 0.00209 AB - 0.0146 AC -
2.683AD – 0.00488 BC + 1.691 BD – 2.206 CD - 0.00415 A² - 0.00679 B² - 0.0117 C² + 314.81 D² 

 

A-Infill Density B-Printing Temperature C-Printing Speed D-Layer Height 

Figure 49. The influence of infill density, Nozzle Temperature, Printing Speed, and Layer Height on 
Yield Stress 
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Table 17. Young Modulus Coefficients in Terms of Coded Factors 

Factor Coefficient 
Estimate DF Standard 

Error 95% CI Low 95% CI 
High VIF 

Intercept 13.21 1 0.1876 12.81 13.61  

A-Density 1.21 1 0.0938 1.02 1.41 1.0000 
B- 

Temperature 0.0265 1 0.0938 -0.1735 0.2264 1.0000 

C-Printing 
Speed -0.6542 1 0.0938 -0.8542 -0.4543 1.0000 

D-Layer 
Height 1.12 1 0.0938 0.9236 1.32 1.0000 

AB -0.1467 1 0.1149 -0.3916 0.0982 1.0000 

AC -0.7306 1 0.1149 -0.9755 -0.4857 1.0000 

AD -1.07 1 0.1149 -1.32 -0.8284 1.0000 

BC -0.1707 1 0.1149 -0.4156 0.0742 1.0000 

BD 0.4736 1 0.1149 0.2287 0.7185 1.0000 

CD -0.4403 1 0.1149 -0.6852 -0.1954 1.0000 

A² -0.4154 1 0.0878 -0.6025 -0.2284 1.05 

B² -0.3328 1 0.0878 -0.5198 -0.1458 1.05 

C² -0.2947 1 0.0878 -0.4817 -0.1076 1.05 

D² 0.5037 1 0.0878 0.3167 0.6907 1.05 

The intercept in an orthogonal design is the overall average response of all the runs. The 
coefficients are adjustments around that average based on the factor settings. When the factors are 
orthogonal the VIFs are 1; VIFs greater than 1 indicate multi-collinearity, the higher the VIF the 
more severe the correlation of factors. As a rough rule, VIFs less than 10 are tolerable.  

iii) Fit Summary: 
Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R²  
Linear 0.0002  0.5045 0.3368  

2FI 0.0034  0.7446 0.6715  
Quadratic < 0.0001  0.9538 0.8625 Suggested 

Cubic < 0.0001  0.9985 0.9489 Aliased 
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iv) Fit Statistics: 
Std. Dev. 0.4596  R² 0.9761 

Mean 12.78  Adjusted R² 0.9538 
C.V. % 3.60  Predicted R² 0.8625 

   Adeq Precision 27.2615 

The Predicted R² of 0.8625 is in reasonable agreement with the Adjusted R² of 0.9538; 
i.e., the difference is less than 0.2. 

Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. 
Your ratio of 27.261 indicates an adequate signal. This model can be used to navigate the design 
space. 

Table 18. ANOVA for Yield Stress Quadratic model 

Source Sum of Squares Df Mean Square F-value p-value  
Model 129.52 14 9.25 43.80 < 0.0001 Significant 

A-Infill Density 35.43 1 35.43 167.73 < 0.0001 Significant 
B-Nozzle Temperature 0.0168 1 0.0168 0.0795 0.7818  

C-Printing Speed 10.27 1 10.27 48.63 < 0.0001 Significant 
D-Layer Height 30.30 1 30.30 143.44 < 0.0001 Significant 

AB 0.3443 1 0.3443 1.63 0.2211  
AC 8.54 1 8.54 40.43 < 0.0001 Significant 
AD 18.43 1 18.43 87.27 < 0.0001 Significant 
BC 0.4661 1 0.4661 2.21 0.1581  
BD 3.59 1 3.59 16.99 0.0009 Significant 
CD 3.10 1 3.10 14.69 0.0016 Significant 
A² 4.73 1 4.73 22.41 0.0003 Significant 
B² 3.04 1 3.04 14.38 0.0018 Significant 
C² 2.38 1 2.38 11.28 0.0043 Significant 
D² 6.96 1 6.96 32.95 < 0.0001 Significant 

Residual 3.17 15 0.2112    

Lack of Fit 3.17 10 0.3168    

Pure Error 0.0000 5 0.0000    

Cor Total 132.69 29     

The Model F-value of 43.80 implies the model is significant. There is only a 0.01% chance 
that an F-value this large could occur due to noise. 

P-values less than 0.0500 indicate model terms are significant. In this case A, C, D, AC, 
AD, BD, CD, A², B², C², D² are significant model terms. Values greater than 0.1000 indicate the 
model terms are not significant.  
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From the graph above we notice that the Tendency of the experimental points aligns with 
the Predicted Model of Young Modulus response  
 

 

 

Figure 50. Alignment of experimental points and predicted responses 

 

Figure 51. Interaction graphs of Factors “Left “A,C”” “Right “A,D” 
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These graphs indicates that the interaction between Infill density and printing speed 
weakens yield stress the lower their value gets “Fig 51 left” but the less the interaction between 
them the higher the stress gets. However, in “Fig 51 Right” Yield stress is correlated with the 
highest infill density and layer height.  

 
In Figure 52 we can see there is no statistical interaction between all three factors “Layer 

height, printing speed, nozzle temperature” which mean they have a minimal impact on yield stress 
or that one explanatory variable's effect is constant across all levels of the others. 

 

 

Figure 52. Interaction graphs of Factors “Left “D,C”” “Right “B,D” 

 

Figure 53. 3D Graph of the simultaneous influence of “Left ‘Layer height and printing speed” and “Right 
‘printing speed and infill density’” on Yield stress  
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Graph above shows that there is significant increase in Yield stress upon increasing infill 
density in interaction with layer height. 

The interaction of layer height and nozzle temperature only influence yield stress when 
layer height is increased. 

 
 

 

 From figure 54 it can be concluded that infill density and layer height have the most 
significant impact on Yield Stress, since a significant increase in YS can be seen upon increasing 
those parameters. While printing speed in both graphs has minimal impact. 

C. Young modulus and Yield Stress modeling based MANFIS: 

a) MANFIS Construction: 

To enhance the MANFIS model for Young Modulus and Yield Stress of the printed specimens, 
30 data samples were used for structuring the model, using MATLAB v.16  

As shown in Figure 55, the MANFIS architecture of the model consisted of:  
 Four input parameters: Infill Density (%), Printing Temperature (°C), Printing 

speed (mm/min) and Layer Heigh (mm) 
 Two output parameters: Young Modulus (GPa) and Yield Stress (MPa). 

 
. 

 

 

Figure 54. 3D Graph of the simultaneous influence of “Left ‘Infill density and printing speed” and “Right 
‘printing speed and layer height ’” on Yield stress  
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The development of MANFIS begins with the construction of an initial fuzzy inference 
system, which subsequently allows for training. Since the number of inputs is relatively small, the 
method of identification grid partitioning is used. This method consists of dividing the universe of 
discourse into a grid of equal units according to the number of inputs and membership functions 
(MFs). In the present study, 4 bell-type MFs are used to model the universe of discourse of each -
input (Figure 56-57). As for the output, a linear fuzzy output is chosen. 

The training phase is an extremely important part of the adaptive fuzzy neuro network, as 
it allows the tuning of the fuzzy rules that govern the model. For this purpose, a series of 
experiment have been done using 20 iteration based on the hybrid training algorithm. as it has been 
proven to be the most effective training algorithm in several works such as [55,62,63] 

 

Figure 56.  Inputs MFs for Young Modulus prediction 
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Figure 57. Inputs MFs for Yield Stress prediction 

After the training process the 30 rules that govern the prediction of the young modulus are 
shown in (Figure 58-a), and those of the Yield stress are represented in (Figure 58-b). It can be 
seen from the same figures that the estimation of the desired variables is fairly accurate, due to 
MANFIS' ability to find the nonlinear relationship between the output and the input through 
machine learning. 

a) b) 

  

Figure 58. Inputs MFs for Yield Stress prediction, Young Modulus, b) Yield Stress 
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b) Performance Comparison: 
In order to verify the performance of the proposed method, a comparison between the multi-

factor regression model presented in the section above and MANFIS is carried out. 
“Figures 59-60” show a comparison between the experimental and predicted values. It is 

observed that the values estimated by MANFIS are in perfect superposition with the 
experimental data, far exceeding the regression model in accuracy. This is due to the robustness 
of the proposed modeling method, which has already proven its effectiveness in several 
engineering applications. 

 
Figure 59. Young Modulus, a) predicted values, b) data correlation 

 

 

Figure 60. Yield Stress, a) predicted values, b) data correlation 

 

This is confirmed by the evolution of the error shown in Figure 61, where, one can easily 
see that MANFIS faithfully reproduces the desired outputs with MSEs of 1.3536e-10 and 7.2669e-
09 respectively for the young Modulus and the yield stress estimation with a correlation coefficient 
of 1. While for the regression model, the MSEs are much larger with values of 0.0013 and 0.1057 
respectively and a correlation of 0.99. The statistical analysis is summarized in Table 19. 
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Table 19. Statistical Comparison 

Criterion 
Young Modulus Yield Stress 

Regression MANFIS Regression MANFIS 
MSE 0,0013 1.3536e-10 0.1057 7.2669e-09 

R2 0,99 1 0,99 1 
 

 

Figure 61. Global Comparison between all the data 

So, we can say there was a considerable agreement between the two methodologies. 

IX. Optimization of the Printers parameters: 
To determine the optimal printing parameters, we first used the desirability function 

method using Design Expert software, which allows us to find the optimal Parameters by satisfying 
both responses at the same time, i.e., we look for optimal values that satisfy the objective function 
of both Young Modulus and Yield Stress.  

To validate the approach that has been used in this work, we assume 3 cases where the 
target of Young Modulus and yield stress is defined by the client, numerical optimization in Design 
Expert Software was used, in order to get the 3D printer parameters.   

We tried 3 examples: 
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C: Printing Speed is in range 48 58 
D: Layer Height is in range 0.14 0.22 
Young Modulus is target = 2 1.39515 2.38375 

Yield Stress is target = 15 8.153 17.688 

Solutions: 

After 100 runs and Solutions found the one with the best criteria was selected “1”  

Number Infill 
Density 

Printing 
Temperature 

Printing 
Speed 

Layer 
Height 

Young 
Modulus 

Yield 
Stress Desirability Selection 

1 40.457 211.640 53.087 0.220 2.000 15.000 1.000 Selected 
2 39.705 210.180 51.169 0.214 2.000 15.000 1.000  

3 38.833 207.670 48.383 0.210 2.000 15.000 1.000  

4 39.909 210.540 51.950 0.216 2.000 15.000 1.000  

Case 2: 
Name Goal Lower Limit Upper Limit 

Young Modulus is target = 1.7 1.39515 2.38375 
Yield Stress is target = 17.5 8.153 17.688 

Solutions: 

Number Infill 
Density 

Printing 
Temperature 

Printing 
Speed 

Layer 
Height 

Young 
Modulus 

Yield 
Stress Desirability Selection 

1 30.000 213.000 53.439 0.220 1.760 14.546 0.790 Selected 
2 30.000 213.000 53.310 0.220 1.762 14.561 0.790  
3 30.000 213.000 53.062 0.220 1.765 14.588 0.790  
4 30.000 212.984 53.692 0.220 1.758 14.516 0.790  

Case 3: 
Name Goal Lower Limit Upper Limit 

Young Modulus is target = 1.4 1.39515 2.38375 
Yield Stress is target = 10 8.153 17.688 

Solutions: 

Number Infill 
Density 

Printing 
Temperature 

Printing 
Speed 

Layer 
Height 

Young 
Modulus 

Yield 
Stress Desirability Selection 

1 30.000 199.000 54.168 0.140 1.552 10.000 0.919 Selected 
2 30.000 199.000 54.113 0.140 1.553 10.000 0.919  
3 30.032 199.000 54.072 0.140 1.553 10.000 0.919  
4 30.001 199.080 53.984 0.141 1.554 10.000 0.919  
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Conclusion 
The influence of 3D Printing parameters on the mechanical properties of commercial PLA 

material according to ASTM D-638 standard tensile test has been investigated. 

DoE method has been applied in the experimental task Using Central Composite Design in 
this study and the results are analyzed through analysis of variance (ANOVA) to determine the 
influence of Main Factors on Young Modulus and Yield Strength. 

From ANOVA it was concluded that of all selected parameters Infill Density is the most 
influential parameter on both properties Young Modulus and Yield Stress followed by layer height, 
printing speed, and Nozzle temperature in the mentioned order.  

As for the prediction model of regression the model gave an accuracy of 90% for young 
modulus and 86% for yield stress which is a satisfactory values for experimental data prediction. 

Using MANFIS method gave a more accurate result and prediction regarding regression 
model. Where the correlation between the experimental data and the predicted model of MANFIS 
had a mean square error equal to 1.3536e-10 for young modulus and a 7.2669e-09 for yield stress 
compared to the regression model 0.0013 for young modulus and 0.1057 for yield strength 
 

The desirability function is a powerful tool when combined with central composite design 
they can be used by designers in order to solve a multi objective optimization problem   

By using the desirability function and central composite design, the designers can obtain 
the 3d printing parameters directly based on the needed mechanical properties implied by the 
client, which reduce the time and cost of the experiment.  

Figure 62. Graph Showing the predicted printer parameters with the desired mechanical 
properties for the third example 
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