
	

	

 الجمھوریة الجزائریة الدیمقراطیة الشعبیة
 وزارة التعلیم العالي والبحث العلمي

	

 عنابـــــــــــــــة –جامعة باجي مختار

	
UNIVERSITE BADJI MOKHTAR - ANNABA
BADJI MOKHTAR – ANNABA UNIVERSITY

Mémoire
Présenté en vue de l’obtention du Diplôme de Master

 Thème :

 Présenté par : Abour Abdennour
 Aloui Mohamed Lamine
	

					Encadrant	:	A. Boulmaiz																								MCB																																		UBM	ANNABA	

	

Jury de Soutenance :

Président UBM Annaba MCB YAHI A.
Encadrant UBM Annaba MCB BOULMAIZ A.

Examinateur UBM Annaba MCA ZERMI N.
	

	

Année Universitaire : 2020/2021	

 Faculté : Sciences de L’ingéniorat
 Département : Electronique
 Domaine : Sciences et Techniques
 Filière : Télécommunication

 Spécialité : Réseaux et Télécommunication	

Convolutional time-domain audio separation network: case
of bird sounds

	 I

Acknowledgement

First of all, we would like to thank the director of this thesis, Mrs.

BOULMAIZ Amira, for trusted us, guided us, encouraged us and

advised us. We are also grateful to her for the considerable time she

gave us, her pedagogical and scientific qualities, her frankness and her

sympathy. we have learned a lot at his side and we are grateful to her

for all that.

We address sincere thanks to Mrs. ZERMI N. and

Mrs. YAHI A. for having done us the honor of participating in the

jury of defense

Finally, we would like to thank all the people who participated in our

research and in the elaboration of this thesis

	 II

Dedications 	
	
	

May this work bear witness to my respects to my parents,

My brothers and sisters and all my family

Thanks to their encouragement and their great sacrifices. No dedication could

express my respect, consideration and deep feelings towards them. I pray to

ALLAH to bless them, to watch over them, hoping that they will always be

proud of me.

To all my teachers

Their generosity and support obliges me to show them my deep respect and my

loyal consideration.

To my friends and colleagues

And to all those who are dear to me

They will find here the expression of a fidelity and an infinite friendship, of my

feelings of gratitude for the support that they did not cease to carry to me.

Find in this modest work my sincere gratitudes and recognition.

This work is yours.

Abdennour et Mohamed Lamine

	 III

Abstract

Birds are strong indicator for the health of an ecosystem. It is one of the most endangered

animal species in the world. This make birds very important and need special attention.

Identify different species and detect bird sounds in mixture recording help to preserve these

species from extinction and therefore preserve the balance of the ecosystem.

In this thesis, we propose to apply a fully-convolutional neural network system in time-

domain named (Conv-TasNet) for bird sounds separation. The studied system is composed of

three main blocks: an encoder, a separation model based on the neural network CNN 1D and a

decoder

Experimental results for the bird sounds separation, demonstrate that the methodology

adopted to separate bird sounds is effective and works satisfactorily. In addition, separation

performance and environmental noise immunity are significantly improved after the

application of the Conv-TasNet method, indicating that it is an appropriate approach for

acoustic recognition of birds in complex environments.

Key words: Bird sounds separation, convolutional neural network, CNN, Conv-TasNet, deep

learning, time-domain.

	 IV

 : ملخص

الطیور ھي مؤشر قوي على صحة النظام البیئي. إنھا واحدة من أكثر أنواع الحیوانات المھددة بالانقراض في العالم. ھذا

 مزیجشاف أصوات الطیور في تسجیل الالطیور مھمة للغایة وتحتاج إلى عنایة خاصة. تحدید الأنواع المختلفة واكتیجعل

 .یساعد في الحفاظ على ھذه الأنواع من الانقراض وبالتالي الحفاظ على توازن النظام البیئي

لفصل أصوات (Conv-TasNet) یسمىمجال الزمني الفي ملتفةتطبیق نظام شبكة عصبیة ، نقترحفي ھذه الأطروحة

 ، ونموذج فصل یعتمد على الشبكة العصبیةجھاز التشفیر رئیسیة: عناصرالطیور. یتكون النظام المدروس من ثلاث

)CNN 1D (تشفیرجھاز فك ال و.

 . مرض أظھرت النتائج التجریبیة لفصل أصوات الطیور أن المنھجیة المعتمدة لفصل أصوات الطیور فعالة وتعمل بشكل

-Conv بعد تطبیق طریقة بشكل ملحوظالضوضاء البیئیة منوالحصانة بالإضافة إلى ذلك، تم تحسین أداء الفصل

TasNetمما یشیر إلى أنھ نھج مناسب للتعرف الصوتي للطیور في البیئات المعقدة ،.

المجال ،التعلم العمیق ، CNN ،Conv-TasNet، ملتفةفصل أصوات الطیور، الشبكة العصبیة ال الكلمات المفتاحیة :

 .الزمني

	 V

Résumé

Les oiseaux sont de puissants indicateurs de la santé d'un écosystème. C'est l'une des espèces

animales les plus menacées au monde. Cela rend les oiseaux très importants et nécessite une

attention particulière. L'identification des différentes espèces et la détection des sons d'oiseaux

dans l'enregistrement du mélange aident à préserver ces espèces de l'extinction et donc à

préserver l'équilibre de l'écosystème.

Dans cette thèse, nous proposons d'appliquer un système de réseau de neurones entièrement

convolutionnel dans le domaine temporel nommé (Conv-TasNet) pour la séparation des sons

d'oiseaux. Le système étudié est composé de trois blocs principaux : un encodeur, un modèle

de séparation basé sur le réseau de neurones CNN 1D et un décodeur.

Les résultats expérimentaux pour la séparation des sons d'oiseaux, démontrent que la

méthodologie adoptée pour séparer les sons d'oiseaux est efficace et fonctionne de manière

satisfaisante. De plus, les performances de séparation et l'immunité au bruit environnemental

sont considérablement améliorées après l'application de la méthode Conv-TasNet, ce qui

indique qu'il s'agit d'une approche appropriée pour la reconnaissance acoustique des oiseaux

dans des environnements complexes.

Mots clés : Séparation des sons d'oiseaux, réseau de neurones convolutifs, CNN, Conv-

TasNet, apprentissage profond, domaine temporel.

	 VI

List of Figures

Figure I.1: Audio Source Separation………………………………………………….. 5

Figure I.2: Bird sound spectrogram decomposition through NMF…………………… 9

Figure I.3: Wave-u-Net architecture………………………………………………….. 10

Figure I.4: Time-domain Audio Separation Network………………………………… 11

Figure II.1. Deep learning family……………………………………………………... 14

Figure II.2. Typical unfolded RNN diagram………………………………………….. 18

Figure II.3. LSTM implementation…………………………………………………… 19

Figure II.4. An example of CNN architecture for image classification………………. 20

Figure II.5. Primary calculations executed at each step of convolutional layer……… 22

Figure III.1. The block diagram of the TasNet system……………………………….. 27

Figure III.2. A flowchart of the proposed system…………………………………….. 30

Figure III.3. The design of 1-D convolutional block…………………………………. 31

Figure IV.1. Python installation ……………………………………………………… 36

Figure IV.1. The characteristics of the machine used ……………………………….. 36

Figure IV.3. Typical directory of a recipe…………………………………………….. 39

Figure IV.4. Sound Separation Architecture………………………………………….. 43

	 VII

	

List of Tables

Table IV.1. Hyperparameters of the network…………………………………………... 42

Table IV.2. Separation score for different system configuration……………………….. 45

Table IV.3. The effect of different configuration in Conv-TasNet……………………... 46

Table IV.4. Comparison of Conv-TasNet on other datasets…………………………..... 47

	

	 VIII

List of Symbols

A Mixing matrix

∗ Conjugation
{ ● } Indicator function

× Multiplication

∀ For all

$ Gradient

⨀ Element-wise product

⨂ Convolution
'

()*

Summation over discrete index i from 1 to N Transpose

+ Vector

,(./	,(() Element of a vector

2(3) Activation function matrix for the L-th layer

2(
(3) Activation function in the L-th layer for the i-th neuron

α Learning rate

α Average room absorption coefficient

5 Bias vector

5(6) Bias vector of a memory cell of a LSTM

5(3) Bias vector for the L-th layer of a fully-connected network

5(7) Bias vector for the forget gate of a LSTM

89 Batch size

: Sparsity penalty term

6 sound wave velocity when travelling through the air

; Phase

< Number of frequency bins

=>?@AB>C@D Artifacts error

	 IX

=AE@F?BF?FECF Interference error

=GH(9= Noise errorN

76I(J F-value critical for the ANOVA test

7,2KL= F-value for the ANOVA test

M Size of the irregularities of a surface

M7(J) Linear correlation coefficient

N Number of neurons in the hidden layer

3 Number of layers of a fully-connected network

' Number of DNNs

	 X

List of Abbreviations

ASA Auditory Scene Analysis

BSD Bird Sound Dataset

BBS Blind Source Separation

CASA Computational Auditory Scene Analysis

CNN Convolutional Neural Network

Conv-TasNet Convolutional Time-Domain Audio Separation Network

cLN cumulative Layer Normalization

DPCL Deep Clustering

DL Deep Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

FastICA Fast Independent Component Analysis

FC Fully Connected

GRUs Gated Recurrent Units

GMMs Gaussian Mixture Models

GANs Generative Adversarial Networks

GAP Global Average Pooling

gLN global Layer Normalization

HMMs Hidden Markov Models

HPC High Performance Computing

IBMs Ideal Binary Masks

ICA Independent Component Analysis

iSTFT inverse Short-Time Fourier Transform

	 XI

LLNL Lawrence Livermore National Laboratory

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

NLP Natural Language Processing

NMF Non-negative Matrix Factorization

PReLU Parametric Rectified Linear Unit

Pinv Pseudo-inverse

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RAAM Recursive Auto-Associative Memory

RvNN Recursive Neural Network

RL Representation Learning

SI-SNR Scale Invariant Source to Noise Ratio

STFT Short-Time Fourier Transform

SDRi Signal to Distortion Ratio improvement

SNR Signal to Noise Ratios

TCN Temporal Convolutional Network

T-D Time-Domain

TasNet Time-Domain Audio Separation Network

T-F Time-Frequency

TL Transfer Learning

UPGMA Unweighted Pair Group Method with Arithmetic mean

WSJ0 Wall Street Journal

	 XII

Table of contents

Acknowledgement …………………………………………………………………… I

Dedications …………………………………………………………………………… II

Abstract ……………………………………………………………………………… III

 IV ..…………………………………………………………………………………ملخص

Résumé ……………………………………………………………………………… V

List of Figures……………………………………………………………………….. VI

List of Tables………………………………………………………………………… VII

List of Symbols……………………………………………………………………….. VIII

List of Abbreviations…………………………………………………………………. X

GENERAL INTRODUCTION

1

Chapter I : Audio separation methods: a state of art

I.1.Introduction……………………………………………………………………….. 3

I.2.Audio source separation………………………………………………………….. 3

I.3.Problem Formulation……………………………………………………………... 3

I.4.Conventional Methods of audio Source Separation……………………………… 5

I.4.1.Independent Component Analysis(ICA)……………………………………….. 5

I.4.2.Fast Independent Component Analysis (FastICA)…………………………….. 6

I.4.3.Computational auditory Scene Analysis (CASA)……………………………… 7

I.5.Categories of Audio Source Separation………………………………………….. 8

I.5.1.Time-Frequency Methods……………………………………………………… 8

I.5.2.Time-Domain Methods………………………………………………………… 9

I.6.Conclusion……………………………………………………………………….. 12

Chapter II : Convolutional Neural Network

II.1.Introduction………………………………………………………………………. 13

II.2.Machine and Deep Learning……………………………………………………... 13

	 XIII

II.2.1.When to Apply Deep Learning………………………………………………… 14

II.2.2.Why Deep Learning……………………………………………………………. 14

II.2.3.Classification of DL Approaches………………………………………………. 15

II.2.4.Types of DL Networks………………………………………………………… 17

II.3.Convolutional Neural Networks…………………………………………………. 19

II.3.1.Benefits of employing CNNs…………………………………………………... 20

II.3.2.CNN Layers……………………………………………………………………. 21

II.4.1D Convolutional neural networks ……………………………………………… 26

II.5.Conclusion……………………………………………………………………….. 26

Chapter III : Conv-TasNet for bird sound separation

III.1.Introduction………………………………………………………… 27

III.2.Convolutional Time-Domain Audio Separation Network…………. 27

III.2.1.Time-Domain audio separation………………………………….. 28

III.2.2.Convolutional encoder-decoder………………………………….. 28

III.2.3.Estimating the separation masks…………………………………. 29

III.2.4.Convolutional separation module………………………………... 29

III.3.Conclusion…………………………………………………………. 33

Chapter IV : Experiment and results

IV.1.Introduction………………………………………………………… 34

IV.2.Programming Languages…………………………………………... 34

IV.2.1.Presentation of programming languages…………………………. 34

IV.2.2.Presentation of Asteroid………………………………………….. 37

IV.2.3.Implementation…………………………………………………… 39

IV.3.Experiment………………………………………………………….. 40

IV.3.1.Experiment configurations……………………………………….. 41

IV.4.Results………………………………………………………………. 42

IV.4.1.Optimizing the network parameters………………………………. 45

IV.4.2.Comparison of Conv-TasNet on other datasets…………………… 46

	 XIV

IV.5.Conclusion……………………………………………………………………….. 47

GENERAL CONCLUSION ……………………………………………………………. 48

APPENDIX…………………………………………………………………………….. 49

BIBLIOGRAPHY ……………………………………………………………………… 59

General Introduction

	
	

1	

GENERAL INTRODUCTION

Birds play a vital role in providing ecosystem functions. However, many birds have

been under threat due to human intrusion on their habitat.

Therefore, there is an urgent need to a method that helps experts to protect birds.

There have been many previous approaches identify bird, but they are limited like

field observation and identifying bird species from their sound. However, the captured

audio recordings are composed of a mixture of different sounds (bird sound,

environmental noise...etc)

Several researchers have been interested in the audio separation of speech but

according to our research very few have studied the separation of bird sounds

Audio source separation algorithms can be roughly divided into two categories, time

frequency (T-F) methods and time-domain (T-D) (or end-to-end) methods. T-F audio

source separation algorithms aim to estimate the enhanced spectrum of each

individual source from the mixture spectra [1], and then rebuild the wave- form via

the inverse short-time Fourier Transform (iSTFT), by combining the enhanced

magnitude spectrum with either noisy or the modified phase of the mixture. On the

downside, the erroneous estimation of the phase limits the upper bound of separation

performance. To solve the phase problem, end-to-end audio source separation

methods such as the fully-convolutional time-domain audio separation network

(Conv-TasNet) [2] and Wave-u-net [3] are proposed.

In this work, we suggest to use Conv-TasNet model for bird sound separation. The

proposed system is based of three processing stages. The first stage consists an

encoder module used to transform short segments of the mixture waveform into their

corresponding representations. This representation is then used to estimate a

multiplicative function (mask) for each source at each time step in the separation

stage. Finally, the modified encoder representations are then inverted back to the

waveforms using a decoder module [2]. The experiments were performed on a dataset

of birds that we composed from xeno-canto.org.

 General Introduction
	

	
	

2	

0.1. Objectives:

 The main objective of this work is to develop a system based on CNN for bird

sound separation. Long term objective in the project is to develop this system until

that could identify bird species by their sound in field conditions.

Others objectives are:

• Forming a dataset of bird sounds

• Learn how deep learning and Convolutional neural network work.

• Learn how to train and test a Convolutional neural network.

• Implementing of Conv-TasNet model.

0.2. Thesis structure:

 The remainder of the thesis is organized as follows:

Chapter I: Audio separation methods: a state of the art. The first chapter focused

on audio source separation and presents the previous methods for separation

Chapter II: Convolutional Neural Network. This chapter is divided into two parts.

The first part of this chapter presents the deep learning with her different techniques.

The second part is devoted to the different types of DL networks, Especially CNN.

Chapter III: Conv-TasNet for bird sound separation. The third chapter explained

the Conv-TasNet method and implement it for bird sound separation.

Chapter IV: Experiments and results. This chapter is focused on the results

obtained for our bird sound separation system

	

	

CHAPTER I

Audio separation methods: a state of art

Chapter I: Audio separation methods: a state of art

	

3

I.1. Introduction

 Audio source separation methods have recently seen great progress. However, the

accuracy, latency, and computational cost of such methods remain insufficient. The majority

of the previous methods have formulated the separation problem through the time-frequency

representation of the mixed signal, which has several drawbacks, including the decoupling of

the phase and magnitude of the signal, the sub-optimality of time-frequency representation for

audio source separation, and the long latency in calculating the spectrograms.

 Therefore, we investigate end-to-end source separation in the time-domain, which allows

modelling phase information and avoids fixed spectral transformations. Due to high sampling

rates for audio, employing a long temporal input context on the sample level is difficult, but

required for high quality separation results because of long-range temporal correlations.

I.2. Audio source separation
 Audio source separation aims to extract individual sources from mixtures of multiple

sound sources, e.g. audio source, noise and music. The problem of separating multiple sound

sources from sound mixtures is also known as the cocktail party problem [4]: one can imagine

a situation in which two friends are in a party, with loud music in the background and other

people around talking simultaneously. Humans have an innate ability to separate audio source

and sounds in a sound mixture. However, this is not a trivial task for computers.

I.3. Problem Formulation

 The audio source separation problem has been considered classically under the framework

of Blind Source Separation (BSS), which aims to separate the sources with no (or very little)

information about the sources and mixing channels.

In the case of R sound sources, the general problem (without noise) to be solved is:

! " = $	s(")	 (I.1)

Where) " = (*+ " .		.		. *- "). 	 	 contains the R independent source signals at the discrete

time index ", !(") 	= 	 (!+ " .		.		. !/(")). 		contains the P recorded microphone signals and A is

the so-called mixing matrix, whose dimension is P × R. In general, both A and are unknown,

and need to be estimated, given !(").

 Chapter I: Audio separation methods: a state of art
	

	

4

Taking into account the number of microphones and sources, three scenarios can be

distinguished:

• Over-determined case: The number of microphones is larger than the number of sources

(R< P).

• Determined case: The number of microphones is equal to the number of sources (R = P).

• Under-determined case: The number of sources is larger than the number of microphones

(R > P). In many situations, the number of sound sources is not known and may be greater

than the number of mixtures. The separation of under-determined mixtures requires

additional assumptions on the source signals than in the over-determined case, in order to

reduce the possible solutions in the solutions space.

Depending on the level of surface reflections in an acoustic environment, three types of

mixtures can be distinguished:

• Instantaneous mixtures: Each microphone records a signal which is a linear combination

of the source signals. In other words, A is a scalar matrix.

• Anechoic mixtures: Each microphone picks up the mixtures of the direct sound from the

sources. A is a scalar matrix and *(") 	→ 	*(" 		− 	3), where 3 is the time taken for the

source to reach the microphone.

• Convolutive mixtures: Room reverberation affects the audio collected by microphones,

leading to superposition of direct sound sources and time-delayed source component due

to room reflections. In this case, A is a matrix of filters. Room reflections also depend on

the experimental methodology employed. Other factors to take into account are

measurement noise (electrical and acoustical), room geometry, acoustic treatment, source

directivity, air flow, temperature, humidity, homogeneity and even the presence of people

and other scatterers.

Depending on whether the measurement process is linear, we have:

• Linear case: The mixture is a linear combination of the sources as represented by model

• Non-linear case: The relation between x and s is characterized by a non-linear function,

such as 4 = exp	(8), where exp	 ⋅ is an exponential function.

Chapter I: Audio separation methods: a state of art

	

5

Figure I.1: Audio Source Separation

I.4. Conventional Methods of Audio Source Separation

 Several techniques have been successfully applied to the audio source separation problem.
For example, binary and soft time-frequency masking, have been applied to the sound mixture
in the time-frequency domain. Independent component analysis [5, 6] is based on the
statistical independence between the sound sources and works for over-determined or
determined mixtures, while Computational Auditory Scene Analysis [7] tackles the problem
from a human perception point of view. Non-negative Matrix Factorization (NMF) [8]
factorizes the mixture spectrogram into a dictionary of source components weighted by
activation coefficients and works well in the case of unsupervised monaural source separation.
Dictionary learning based sparse representation technique has been used for under-determined
sound separation.

 The following sub-sections will briefly present several main approaches that have been
developed for audio source separation.

I.4.1. Independent Component Analysis (ICA)

 In Independent component analysis [5, 6], each mixture x and source s in (I.1), are

assumed to be a random variable, with zero mean (otherwise they can always be centred by

subtracting the sample mean). Moreover, the sources s are assumed to be statistically

independent, which means that the following relation on the probabilities holds for the two

variables :;, :=:
> :;, := = :; := 	 (I.2)

Where p indicates the joint density function. When the two variables are Gaussian distributed,

> :;, := would be itself Gaussian, therefore it would not contain any information on the

 Chapter I: Audio separation methods: a state of art
	

	

6

directions of the columns of the mixing matrix A: this implies that the ICA model cannot be

used for separating multiple Gaussian sources.

 Two main problems arise when using the ICA techniques: considering that both A and s

are unknown, it is impossible to estimate the variances of the independent components and

their order. While on one hand ICA guarantees unique solutions subject to scale and

permutation ambiguities, the weak point of ICA-based techniques is that, in order to be

effective, it is necessary to first estimate the number of unknown sources from the mixture

before performing source separation. Moreover, ICA is not suitable for sources which are

mutually dependent.

 The problem of separating mixed audio source signals using ICA has been widely

investigated. Early papers [9, 10] attempt to recover multiple unknown source signals from

multiple observed signals that are mixtures of the sources. However, the method in [10] is

successful in those cases where [9] fails, e.g. for weak signals in a high level of noise. In more

recent papers, such as [11], ICA is applied to convolutive mixtures of two audio sources,

picked-up by two-microphones. The sources are extracted one by one in a decreasing order of

negentropy from the mixed signal.

 A different approach consists in using ICA techniques for the estimation of Ideal Binary

Masks (IBMs) in [12, 13]. More specifically, in [12], a method for instantaneous mixing

model is proposed, which assumes closely spaced microphones. IBMs estimated from the

outputs of an ICA algorithm are used to extract an arbitrary number of audio source signals.

In [13], ICA is used to estimate the IBMs for separating the source signals from two-

microphone recordings of convolutive audio source mixtures, but includes an additional step,

which introduces cepstral smoothing, in order to reduce musical noise caused by the T-F

masking. Other works [14] aim for a lower computational complexity and a faster

convergence compared to standard ICA methods [6], where a target audio is extracted and

recognized from noisy stereo mixtures.

I.4.2. Fast Independent Component Analysis (FastICA)

 An efficient and popular algorithm for ICA, named FastICA [6], is employed in several

works [15–18], offering fast convergence, guaranteed global convergence for certain mixing

conditions and contrasts, and robustness in presence of noise. Convolutive mixtures are

separated in [15] by using the FastICA algorithm. This algorithm combines multi-channel

whitening with fixed-point iterations, which allows the sources to be reconstructed as they

Chapter I: Audio separation methods: a state of art

	

7

appear in the observed mixtures. In [16], an enhanced FastICA is employed, showing less

artifacts compared to the ICA method in [11]. A different approach is followed in [17], where

ICA is used for identifying the active components of Hidden Markov Models (HMMs).

 The FastICA algorithm in [10] is here used to build independent voice space for talker and

environment adaptation. The work in [18] is based on the maximisation of non-Gaussianity

technique using Gradient ICA algorithm and FastICA algorithm, and then compares the

results of both methods. While FastICA needs less execution time compared to Gradient ICA,

the latter provides a higher efficiency in separating audio signals. FastICA is also combined

with sparse component analysis, and applied to over and under-determined mixtures.

I.4.3. Computational Auditory Scene Analysis (CASA)

 In Computational Auditory Scene Analysis [7] the task is to separate mixtures of sound

sources like human listeners do. In the same way in which an image is analyzed and processed

as a whole by sensing the single features, such as edges, textures and colors, the sound

reaching the human ear is subject to Auditory Scene Analysis (ASA).

A standard CASA system consists of four stages [7]:

1) Peripheral analysis: the input signal is processed using an auditory model, resulting in

a cochleagram (a T-F representation).

2) Auditory features extraction: some features are generated.

3) Segmentation: the system generates a collection of segments or contiguous regions in

a cochleagram.

4) Grouping: those segments which are likely to come from the same source are grouped

into a perceptual structure, called stream, corresponding to how the source is mentally

perceived by the listener.

 CASA attempts to construct a machine that approaches human performance in ASA by

using one or two microphones recordings of the acoustic scene, in order to extract individual

source streams. A typical example in CASA aims to estimate an ideal time-frequency mask,

built e.g. by using a model of peripheral auditory system called cochleagram, which emulates

the human frequency selectivity. CASA is one of the first attempts to imitate the human

auditory system for the purpose of creating an audio source separation system.

 Chapter I: Audio separation methods: a state of art
	

	

8

I.5. Categories of Audio Source Separation

 Audio source separation algorithms can be roughly divided into two categories, time-

frequency T-F methods and T-D (or end-to-end) methods. T-F audio source separation

algorithms aim to estimate the enhanced spectrum of each individual source from the mixture

spectra [1], and then rebuild the wave- form via the iSTFT, by combining the enhanced

magnitude spectrum with either noisy or the modified phase of the mixture. On the downside,

the erroneous estimation of the phase limits the upper bound of separation performance. To

solve the phase problem, end-to-end audio source separation methods such as the fully-

convolutional time-domain audio separation network (Conv-TasNet) [2] and Wave-u-net [3]

are proposed.

I.5.1. Time-frequency methods

 Having a conversation in a complex acoustic environment, with multiple noise sources

and competing background speakers, is a task humans are remarkably good at. The problem

that humans solve when they focus their auditory attention towards one audio signal in a

complex mixture of signals is commonly known as the cocktail party problem.

 Since the cocktail party problem was initially formalized, a large number of potential

solutions have been proposed, and the most popular techniques originate from the field of

Computational Auditory Scene Analysis. In CASA, different segmentation and grouping rules

are used to group T-F units that are believed to belong to the same speaker the grouped T-F

units are then used to extract a particular speaker from the mixture signal. Another popular

technique for multi-talker audio source separation is NMF.

 The NMF technique uses non-negative dictionaries to decompose the spectrogram of the

mixture signal into speaker specific activations, and from these activations an isolated target

signal can be approximated using the dictionaries. For multi-talker audio source separation,

both CASA and NMF have led to limited success and the most successful techniques, before

the deep learning era, are based on probabilistic models, such as factorial Gaussian mixture

models-Hidden Markov models (GMM-HMM) , that model the temporal dynamics and the

complex interactions of the target and competing audio source signals. Unfortunately, these

models assume and only work under closed-set speaker conditions, i.e. the identity of the

speakers must be known a priori.

Chapter I: Audio separation methods: a state of art

	

9

Figure I.2: Bird sound spectrogram decomposition through NMF

There are other methods proposed from some scientists:

 In Weng et al. [18], which proposed the best performing system in the 2006 monaural

audio source separation and recognition challenge , the instantaneous energy was used to

determine the training label assignment, which alleviated the label permutation problem and

allowed separation of unknown speakers. Although this approach works well for two-speaker

mixtures, it is hard to scale up to mixtures of three or more speakers.

 Hershey et al. [20] have made significant progress with their Deep Clustering (DPCL)

technique. In their work, a deep Recurrent Neural Network (RNN) is used to project the audio

source mixture into an embedding space, where T-F units belonging to the same speaker form

a cluster. In this embedding space a clustering algorithm (e.g. K means) is used to identify the

clusters. Finally, T-F units belonging to the same clusters are grouped together and a binary

mask is constructed and used to separate the speakers from the mixture signal. To further

improve the model, another RNN is stacked on top of the first DPCL RNN to estimate

continuous masks for each target speaker. Although DPCL show good performance, the

technique is potentially limited because the objective function is based on the affinity between

the sources in the embedding space, instead of the separated signals themselves. That is, low

proximity in the embedding space does not necessarily imply perfect separation of the sources

in the signal space.

 Chapter I: Audio separation methods: a state of art
	

	

10

I.5.2. Time-domain methods

A. Wave-u-net

 The Wave-U-Net is a neural network applicable to audio source separation tasks,	which

directly separates a time-domain signal into source signals and works directly on the raw

audio waveform. The Wave-U-Net is an adaptation of the U-Net architecture to the one-

dimensional time domain to perform end-to-end audio source separation and has an encoder-

decoder architecture.

 As shown in Figure (I.3), Wave-U-Net architecture computes an increasing number of

higher-level features on coarser time scales using down-sampling blocks. These features are

combined with the earlier computed local, high-resolution features using up-sampling blocks,

yielding multi-scale features which are used for making predictions. The network has L levels

in total, with each successive level operating at half the time resolution as the previous one.

For K sources to be estimated, the model returns predictions in the interval(−1; 	1), one for

each source audio sample [3].

Figure I.3: Wave-u-Net architecture

Chapter I: Audio separation methods: a state of art

	

11

B. TASNET

 Time-domain Audio Separation Network (TasNet) is a neural network that directly

models the mixture waveform using an encoder-decoder framework, and performs the

separation on the output of the encoder. In this framework, the mixture waveform is

represented by a nonnegative weighted sum of basis signals, where the weights are the outputs

of the encoder, and the basis signals are the filters of the decoder. The separation is done by

estimating the weights that correspond to each source from the mixture weight. Because the

weights are nonnegative, the estimation of source weights can be formulated as finding the

masks which indicate the contribution of each source to the mixture weight, similar to the T-F

masks that are used in Short-Time Fourier Transform (STFT) systems. The source waveforms

are then reconstructed using the learned decoder. Since TasNet operates on waveform

segments that can be small, the system can be implemented in real-time with very low

latency. Also TasNet outperforms the state-of-art STFT-based system in applications that do

not require real-time processing.

 The structure of the network contains three parts: an encoder for estimating the mixture

weight, a separation module, and a decoder for source waveform reconstruction. The

combination of the encoder and the decoder modules construct a nonnegative auto encoder for

the waveform of the mixture, where the nonnegative weights are calculated by the encoder

and the basis signals are the 1-D filters in the decoder. The separation is performed on the

mixture weight matrix using a subnetwork that estimates a mask for each source. As shown in

Figure (I.4) [21].

Figure I.4: Time-domain Audio Separation Network

 Chapter I: Audio separation methods: a state of art
	

	

12

I.6. Conclusion

 Powerful audio source processing in a real sound environment usually requires automatic

audio source separation. Due to the importance of this research topic to language processing

technology, many methods to solve this problem have been proposed as we saw in the first

chapter. However, with this remarkable progress in audio source separation methods, they are

still insufficient, because we haven't seen a method for separating some other audio sources.

Therefore, until today there is no separation method for bird sounds.

 In next chapter, we will present the deep learning with her different techniques. In

addition, we will study the different types of DL networks, Especially CNN.

CHAPTER II

Convolutional Neural Network

Chapter II: Convolutional Neural Network
	

	 	 13

II.1. Introduction
 In this chapter, we present machine learning in general, deep learning, 2D convolutional

neural networks CNN, and finally 1D convolutional neural network.

II.2. Machine and Deep learning

 Recently, machine learning (ML) has become very widespread in research and has been

incorporated in a variety of applications, including text mining, spam detection, video

recommendation, image and audio classification, and multimedia concept retrieval [22].

Among the different ML algorithms, deep learning (DL) is very commonly employed in these

applications. Another name for DL is representation learning (RL). The continuing

appearance of novel studies in the ends of deep and distributed learning is due to both the

unpredictable growth in the ability to obtain data and the amazing progress made in the

hardware technologies, e.g. High Performance Computing (HPC) [23].

 DL is derived from the ML but considerably outperforms its predecessors. Moreover, DL

employs transformations and graph technologies simultaneously in order to build up multi-

layer learning models. The most recently developed DL techniques have obtained good

outstanding performance across a variety of applications, including audio and audio source

processing, visual data processing, natural language processing (NLP), among others [24].

In the field of ML, DL, due to its considerable success, is currently one of the most prominent

research trends. In this section, an overview of DL is presented that adopts various

perspectives such as the main concepts, architectures, challenges, applications, computational

tools and evolution matrix. Convolutional neural network (CNN) is one of the most popular

and used of DL networks. Because of CNN, DL is very popular nowadays. The main

advantage of CNN compared to its predecessors is that it automatically detects the significant

features without any human supervision which made it the most used. Therefore, we have dug

in deep with CNN by presenting the main components of it.

 Chapter II: Convolutional Neural Network
 	

	
	

14

. Figure II.1. Deep learning family

II.2.1. When to apply deep learning?

 Machine intelligence is useful in many situations which is equal or better than human

experts in some cases, meaning that DL can be a solution to the following problems:

• Cases where human experts are not available.

• Cases where humans are unable to explain decisions made using their expertise (language

understanding, medical decisions, and audio recognition).

• Cases where the problem solution updates over time (price prediction, stock preference,

weather prediction, and tracking).

• Cases where solutions require adaptation based on specific cases (personalization,

biometrics).

• Cases where size of the problem is extremely large and exceeds our inadequate reasoning

abilities (sentiment analysis, matching ads to Facebook, calculation webpage ranks).

II.2.2. Why deep learning?

 Several performance features may answer this question, e.g.

• Universal Learning Approach: Because DL has the ability to perform in

approximately all application domains, it is sometimes referred to as universal

learning.

Chapter II: Convolutional Neural Network
	

	 	 15

• Robustness: In general, precisely designed features are not required in DL techniques.

Instead, the optimized features are learned in an automated fashion related to the task

under consideration. Thus, robustness to the usual changes of the input data is

attained.
• Generalization: Different data types or different applications can use the same DL

technique, an approach frequently referred to as transfer learning (TL) which

explained in the latter section. Furthermore, it is a useful approach in problems where

data is insufficient.

• Scalability: DL is highly scalable. ResNet [25], which was invented by Microsoft,

comprises 1202 layers and is frequently applied at a supercomputing scale. Lawrence

Livermore National Laboratory (LLNL), a large enterprise working on evolving

frameworks for networks, adopted a similar approach, where thousands of nodes can

be implemented.

II.2.3. Classification of DL approaches

 DL techniques are classified into three major categories: unsupervised, partially

supervised (semi-supervised) and supervised. Furthermore, deep reinforcement learning

(DRL), also known as RL, is another type of learning technique, which is mostly considered

to fall into the category of partially supervised (and occasionally unsupervised) learning

techniques.		

A. Deep supervised learning

 This technique deals with labeled data. When considering such a technique, the environs

have a collection of inputs and resultant outputs	 "#, %# ∼ ' . For instance, the smart agent

guesses %# =)("#) if the input is "# and will obtain ,(%#, %#) as a loss value. Next, the

network parameters are repeatedly updated by the agent to obtain an improved estimate for

the preferred outputs. Following a positive training outcome, the agent acquires the ability to

obtain the right solutions to the queries from the environs.

 For DL, there are several supervised learning techniques, such as recurrent neural

networks (RNNs), convolutional neural networks (CNNs), and deep neural networks (DNNs).

In addition, the RNN category includes gated recurrent units (GRUs) and long short-term

memory (LSTM) approaches.

 Chapter II: Convolutional Neural Network
 	

	
	

16

 The main advantage of this technique is the ability to collect data or generate a data output

from the prior knowledge. However, the disadvantage of this technique is that decision

boundary might be overstrained when training set doesn’t own samples that should be in a

class. Overall, this technique is simpler than other techniques in the way of learning with high

performance.

B. Deep semi-supervised learning

 In this technique, the learning process is based on semi-labeled datasets. Occasionally,

generative adversarial networks (GANs) and DRL are employed in the same way as this

technique. In addition, RNNs, which include GRUs and LSTMs, are also employed for

partially supervised learning. One of the advantages of this technique is to minimize the

amount of labeled data needed. On other the hand, one of the disadvantages of this technique

is irrelevant input feature present training data could furnish incorrect decisions. Text

document classifier is one of the most popular examples of an application of semi-supervised

learning. Due to difficulty of obtaining a large amount of labeled text documents, semi-

supervised learning is ideal for text document classification task.

C. Deep unsupervised learning

 This technique makes it possible to implement the learning process in the absence of

available labeled data (i.e. no labels are required). Here, the agent learns the significant

features or interior representation required to discover the unidentified structure or

relationships in the input data. The main disadvantages of unsupervised learning are unable to

provide accurate information concerning data sorting and computationally complex. One of

the most popular unsupervised learning approaches is clustering [26].

Chapter II: Convolutional Neural Network
	

	 	 17

II.2.4. Types of DL networks

The most famous types of deep learning networks are discussed in this section: these include

recursive neural networks (RvNNs), RNNs, and CNNs. RvNNs and RNNs were briefly

explained in this section while CNNs were explained in deep due to the importance of this

type in our work. Furthermore, it is the most used in several applications among other

networks. ��

A. Recursive neural networks

RvNN can achieve predictions in a hierarchical structure also classify the outputs utilizing

compositional vectors [27]. Recursive auto-associative memory (RAAM) is the primary

inspiration for the RvNN development. The RvNN architecture is generated for processing

objects, which have randomly shaped structures like graphs or trees. This approach generates

a fixed-width distributed representation from a variable-size recursive-data structure.

B. Recurrent neural networks

RNNs are a commonly employed and familiar algorithm in the discipline of DL. RNN is

mainly applied in the area of audio processing and NLP contexts [28].

Unlike conventional networks, RNN uses sequential data in the network. Since the embedded

structure in the sequence of the data delivers valuable information, this feature is fundamental

to a range of different applications. For instance, it is important to understand the context of

the sentence in order to determine the meaning of a specific word in it. Thus, it is possible to

consider the RNN as a unit of short-term memory, a typical unfolded RNN diagram is

illustrated in Figure II.2.

Pascanu et al. [29] introduced three different types of deep RNN techniques, namely “Hidden-

to-Hidden”, “Hidden-to-Output”, and “Input-to-Hidden”. A deep RNN is introduced that

lessens the learning difficulty in the deep network and brings the benefits of a deeper RNN

based on these three techniques.

 Chapter II: Convolutional Neural Network
 	

	
	

18

Figure II.2. Typical unfolded RNN diagram

However, RNN’s sensitivity to the exploding gradient and vanishing problems represent one

of the main issues with this approach. More specifically, during the training process, the

reduplications of several large or small derivatives may cause the gradients to exponentially

explode or decay. With the entrance of new inputs, the network stops thinking about the

initial ones; therefore, this sensitivity decays over time. Furthermore, this issue can be

handled using LSTM [30].

C. Long short term memory networks

Long-Short Time Memory networks are special kind of RNN, networks with loops in them,

allowing information to persist. LSTMs are capable of learning long-term dependencies

between input samples. Furthermore, they are great remembering information for long time

periods.

LSTMs have a chain like structure with a repeating module. In one of the most common

implementations, each module is composed by a cell, an input gate, an output gate and a

forget gate. The cell remembers values over arbitrary time intervals and the three gates

regulate the flow of information into and out of the cell [30].

Chapter II: Convolutional Neural Network
	

	 	 19

Figure II.3. LSTM implementation

CNN is considered to be more powerful than RNN and LSTM. RNN includes less feature

compatibility when compared to CNN.

II.3. Convolutional neural networks
 In the field of DL, the CNN is the most famous and commonly employed algorithm [31].

The main benefit of CNN compared to its predecessors is that it automatically identifies the

relevant features without any human supervision. CNNs have been extensively applied in a

range of different fields, including computer vision, speech processing, Face Recognition, etc.

The structure of CNNs was inspired by neurons in human and animal brains, similar to a

conventional neural network. More specifically, in a cat’s brain, a complex sequence of cells

forms the visual cortex; this sequence is simulated by the CNN [32].

 Goodfellow et al. [33] identified three key benefits of the CNN: equivalent representations,

sparse interactions, and parameter sharing. Unlike conventional fully connected (FC)

networks, shared weights and local connections in the CNN are employed to make full use of

2D input-data structures like image signals or mixture of 1D input-data.

 This operation utilizes an extremely small number of parameters, which both simplifies

the training process and speeds up the network. This is the same as in the visual cortex cells.

Notably, only small regions of a scene are sensed by these cells rather than the whole scene

(i.e., these cells spatially extract the local correlation available in the input, like local filters

over the input).

 Chapter II: Convolutional Neural Network
 	

	
	

20

A commonly used type of CNN, which is similar to the multi-layer perceptron (MLP),

consists of numerous convolution layers preceding sub-sampling (pooling) layers, while the

ending layers are FC layers. An example of CNN architecture for image classification is

illustrated in figure II.4.

Figure II.4. An example of CNN architecture for image classification

II.3.1. Benefits of employing CNNs

 The benefits of using CNNs over other traditional neural networks in the computer vision

environment are listed as follows:

1) The main reason to consider CNN is the weight sharing feature, which reduces the

number of trainable network parameters and in turn helps the network to enhance

generalization and to avoid overfitting.

2) Concurrently learning the feature extraction layers and the classification layer causes

the model output to be both highly organized and highly reliant on the extracted

features.

3) Large-scale network implementation is much easier with CNN than with other neural

networks.

Chapter II: Convolutional Neural Network
	

	 	 21

II.3.2. CNN layers

The CNN architecture consists of a number of layers (or so-called multi-building blocks).

Each layer in the CNN architecture, including its function, is described in detail below.	

1. Convolutional Layer: In CNN architecture, the most significant component is the

convolutional layer. It consists of a collection of convolutional filters (so-called kernels).

In our case, the input mixture of bird sounds, expressed as N-dimensional metrics, is

convolved with these filters to generate the output feature map.

• Kernel definition: A grid of discrete numbers or values describes the kernel. Each

value is called the kernel weight. Random numbers are assigned to act as the weights

of the kernel at the beginning of the CNN training process. In addition, there are

several different methods used to initialize the weights. Next, these weights are

adjusted at each training era; thus, the kernel learns to extract significant features.

• Convolutional Operation: Initially, the CNN input format is described. The vector

format is the input of the traditional neural network, while the image is the input of

the CNN. To understand the convolutional operation, let us take an example of a 4 ×

4 gray-scale image with a 2 × 2 random weight-initialized kernel. First, the kernel

slides over the whole image horizontally and vertically. In addition, the dot product

between the input image and the kernel is determined, where their corresponding

values are multiplied and then summed up to create a single scalar value, calculated

concurrently. The whole process is then repeated until no further sliding is possible.

Note that the calculated dot product values represent the feature map of the output.

Figure 8 graphically illustrates the primary calculations executed at each step. In this

figure, the light green color represents the 2 × 2 kernel, while the light blue color

represents the similar size area of the input image. Both are multiplied; the end result

after summing up the resulting product values (marked in a light orange color)

represents an entry value to the output feature map.

• However, padding to the input image is not applied in the previous example, while a

stride of one (denoted for the selected step-size over all vertical or horizontal

locations) is applied to the kernel. Note that it is also possible to use another stride

value. In addition, a feature map of lower dimensions is obtained as a result of

increasing the stride value.

• On the other hand, padding is highly significant to determining border size

 Chapter II: Convolutional Neural Network
 	

	
	

22

information related to the input mixture sounds. By contrast, the border side-features

moves carried away very fast. By applying padding, the size of the input will

increase, and in turn, the size of the output feature map will also increase. Core

Benefits of Convolutional Layers.

• Sparse Connectivity: Each neuron of a layer in FC neural networks links with all

neurons in the following layer. By contrast, in CNNs, only a few weights are

available between two adjacent layers. Thus, the number of required weights or

connections is small, while the memory required to store these weights is also small;

hence, this approach is memory-effective. In addition, matrix operation is

computationally costlier than the dot operation ⨀ in CNN.

Figure II.5. Primary calculations executed at each step of convolutional layer

Chapter II: Convolutional Neural Network
	

	 	 23

• Weight Sharing: There are no allocated weights between any two neurons of

neighboring layers in CNN, as the whole weights operate with one and all pixels of

the input matrix. Learning a single group of weights for the whole input will

significantly decrease the required training time and various costs, as it is not

necessary to learn additional weights for each neuron.

2. Pooling Layer: The main task of the pooling layer is the sub-sampling of the feature

maps. These maps are generated by following the convolutional operations. In other

words, this approach shrinks large-size feature maps to create smaller feature maps.

Concurrently, it maintains the majority of the dominant information (or features) in every

step of the pooling stage. In a similar manner to the convolutional operation, both the

stride and the kernel are initially size-assigned before the pooling operation is executed.

Several types of pooling methods are available for utilization in various pooling layers.

These methods include tree pooling, gated pooling, average pooling, min pooling, max

pooling, global average pooling (GAP), and global max pooling. The most familiar and

frequently utilized pooling methods are the max, min, and GAP pooling. Sometimes, the

overall CNN performance is decreased as a result; this represents the main shortfall of the

pooling layer, as this layer helps the CNN to determine whether or not a certain feature is

available in the particular input, but focuses exclusively on ascertaining the correct

location of that feature. Thus, the CNN model misses the relevant information

3. Activation Function (non-linearity): Mapping the input to the output is the core

function of all types of activation function in all types of neural network. The input value

is determined by computing the weighted summation of the neuron input along with its

bias (if present). This means that the activation function makes the decision as to whether

or not to fire a neuron with reference to a particular input by creating the corresponding

output. Non-linear activation layers are employed after all layers with weights (so-called

learnable layers, such as FC layers and convolutional layers) in CNN architecture. This

non-linear performance of the activation layers means that the mapping of input to output

will be non-linear; moreover, these layers give the CNN the ability to learn extra-

complicated things. The activation function must also have the ability to differentiate,

which is an extremely significant feature, as it allows error back-propagation to be used

to train the network. The following types of activation functions are most commonly used

in CNN and other deep neural networks.

 Chapter II: Convolutional Neural Network
 	

	
	

24

• Sigmoid: The input of this activation function is real numbers, while the output is

restricted to between zero and one. The sigmoid function curve is S-shaped and can be

represented mathematically by Eq. (II.1).

)	(")./01 	= 	
1

1 + 456
	 (II.1)

• Tanh: It is similar to the sigmoid function, as its input is real numbers, but the output

is restricted to between −1 and 1. Its mathematical representation is in Eq. (II.2).

)	(")#789 = 	
46 − 456	
46 + 	456

 (II.2)

• ReLU: The mostly commonly used function in the CNN context. It converts the

whole values of the input to positive numbers. Lower computational load is the main

benefit of ReLU over the others. Its mathematical representation is in Eq. (II.3).

)	(");<=> = 	?@"(0, ") (II.3)

Occasionally, a few significant issues may occur during the use of ReLU. For

instance, consider an error back-propagation algorithm with a larger gradient flowing

through it. Passing this gradient within the ReLU function will update the weights in a

way that makes the neuron certainly not activated once more. This issue is referred to

as “Dying ReLU”. Some ReLU alternatives exist to solve such issues. The following

discusses some of them.

• Leaky ReLU: Instead of ReLU down-scaling the negative inputs, this activation

function ensures these inputs are never ignored. It is employed to solve the Dying

ReLU problem. Leaky ReLU can be represented mathematically as in Eq. (II.4).

)(")=<BC;<=> =
", D)	"	 > 0
?",			" ≤ 0

 (II.4)

Note that the leak factor is denoted by m. It is commonly set to a very small value, such as

0.001.

Chapter II: Convolutional Neural Network
	

	 	 25

• Noisy ReLU: This function employs a Gaussian distribution to make ReLU noisy. It

can be represented mathematically as in Eq. (II.5).

)(")GH/.C;<=> = 	?@"("	 + 	I), JDKℎ	I	 ∼ 	M(0, N(")) (II.5)

• Parametric Linear Units: This is mostly the same as Leaky ReLU. The main

difference is that the leak factor in this function is updated through the model training

process. The parametric linear unit can be represented mathematically as in Eq. (II.6).

)	(")OPQPRSTQUVWUXSPQ 	= 	
"	, D)	" > 0

@"	, D)	" ≤ 0 (II.6)

Note that the learnable weight is denoted as a

4. Fully Connected Layer: Commonly, this layer is located at the end of each CNN

architecture. Inside this layer, each neuron is connected to all neurons of the previous

layer, the so-called FC approach. It is utilized as the CNN classifier. It follows the

basic method of the conventional multiple-layer perceptron neural network, as it is a

type of feed-forward ANN. The input of the FC layer comes from the last pooling or

convolutional layer. This input is in the form of a vector, which is created from the

feature maps after flattening.

5. Loss Functions: The previous section has presented various layer-types of CNN

architecture. In addition, the final classification is achieved from the output layer,

which represents the last layer of the CNN architecture. Some loss functions are

utilized in the output layer to calculate the predicted error created across the training

samples in the CNN model. This error reveals the difference between the actual output

and the predicted one. Next, it will be optimized through the CNN learning process.

However, two parameters are used by the loss function to calculate the error. The

CNN estimated output (referred to as the prediction) is the first parameter. The actual

output (referred to as the label) is the second parameter.

 Chapter II: Convolutional Neural Network
 	

	
	

26

II.4. 1D Convolutional neural networks

 The conventional deep CNNs presented in the previous section are designed to operate

exclusively on 2D data such as images and videos. This is why they are often referred to as,

‘‘2D CNNs”. As an alternative, a modified version of 2D CNNs called 1D Convolutional

Neural Networks (1D CNNs) have recently been developed [74]. These studies have shown

that for certain applications 1D CNNs are advantageous and thus preferable to their 2D

counterparts in dealing with 1D signals due to the following reasons:

• There is a significant difference in terms of computational complexities of 1D and 2D

convolutions, i.e., an image with M"M dimensions convolve with Y"Y kernel will

have a computational complexity ~[(M\Y\) while in the corresponding 1D

convolution (with the same dimensions, N and K) this is ~	[(MY).. This means that

under equivalent conditions (same configuration, network and hyper parameters) the

computational complexity of a 1D CNN is significantly lower than the 2D CNN.

• As a general observation especially over the recent studies most of the 1D CNN

applications have used compact (with 1–2 hidden CNN layers) configurations with

networks having<10 K parameters whereas almost all 2D CNN applications have used

‘‘deep” architectures with more than 1 M (usually above 10 M) parameters.

Obviously, networks with shallow architectures are much easier to train and

implement.

• Usually, training deep 2D CNNs requires special hardware setup (e.g. Cloud

computing or GPU farms). On the other hand, any CPU implementation over a

standard computer is feasible and relatively fast for training compact 1D CNNs with

few hidden layers (e.g. 2 or less) and neurons (e.g. < 50).

• Due to their low computational requirements, compact 1D CNNs are well-suited for

real-time and low-cost applications especially on mobile or hand-held devices [34].

II.5. Conclusion

In this chapter, we presented some generalities about machine learning, then we introduced

the notion of deep learning (DL). We investigated classification of DL approaches and

different types of DL networks. We then looked in detail at the 2D convolutional neural

network and finally the 1D CNN network that we will need for the rest of our work.

CHAPTER III

Conv-TasNet for bird sound separation

 Chapter III: Conv-TasNet for bird sound separation
	

	 27

III.1. Introduction

 Fully-connected DNNs are an early and commonly used type of neural networks applied to

audio source separation. However, many works show that these networks may be limited,

especially when the recordings contain some levels of reverberation.

 Conv-TasNet is a recently proposed fully-convolutional time-domain audio separation

network based deep neural network that achieves state-of-the-art performance in audio source

source separation. Its architecture consists of a learnable encoder/decoder and a separator that

operates on top of this learned space. Various improvements have been proposed to Conv-

TasNet. However, they mostly focus on the separator, leaving its encoder/decoder as a

(shallow) linear operator.

 The fully-convolutional time-domain audio separation network (Conv-TasNet), a deep

learning framework for end-to-end time-domain audio source separation. Conv-TasNet uses a

linear encoder to generate a representation of the audio source waveform optimized for

separating individual sounds.

III.2. Convolutional Time-Domain Audio Separation Network

The fully-convolutional time-domain audio separation net- work (Conv-TasNet) consists of

three (03) processing stages, as shown in figure III.1: encoder, separation, and decoder.

First, an encoder module is used to transform short segments of the mixture waveform into

their corresponding representations in an intermediate feature space. This representation is

then used to estimate a multiplicative function (mask) for each source at each time step. The

source waveforms are then reconstructed by transforming the masked encoder features using a

decoder module. We describe the details of each stage in this section.

Figure III.1. The block diagram of the TasNet system

 Chapter III: Conv-TasNet for bird sound separation

	

28

III.2.1. Time-domain audio source separation

 The problem of single-channel audio source separation can be formulated in terms of

estimating C sources !" # , …	, !' # 	 ∈ 	ℝ"×+, given the discrete waveform of the mixture

, # 	∈ 	ℝ"×+, where

 , # = !.(#)
1
.2" (III.1)

In time-domain audio separation, we aim to directly estimate !. # , 3 = 1,… , 5,	from ,(#).

III.2.2. Convolutional encoder-decoder

 The input mixture sound can be divided into overlapping segments of length L,

represented by ,6 ∈ ℝ"×7, where 8 = 1, . . . , : denotes the segment index and : denotes the

total number of segments in the input. ,6 is transformed into a N-dimensional representation,

; ∈ ℝ"×<	by a 1-D convolution operation, which is reformulated as a matrix multiplication

(the index k is dropped from now on):

 ; = 	ℋ(,>) (III.2)

 Where > ∈ ℝ<×7 contains N vectors (encoder basis functions) with length L each, and

ℋ ⋅ is an optional nonlinear function. In [21], ℋ ⋅ was the rectified linear unit (ReLU) to

ensure that the representation is non-negative. The decoder reconstructs the waveform from

this representation

Using a 1-D transposed convolution operation, which can be reformulated as another matrix

multiplication:

 , = ;@ (III.3)

 Where , ∈ ℝ"×7 is the reconstruction of x, and the rows in @ ∈ ℝ<×7 are the decoder basis

functions, each with length L. The overlapping reconstructed segments are summed together

to generate the final waveforms.

 Chapter III: Conv-TasNet for bird sound separation
	

	 29

 Although we reformulate the encoder/decoder operations as matrix multiplication, the

term “convolutional auto-encoder” is used because in actual model implementation,

convolutional and transposed convolutional layers can more easily handle the overlap

between segments and thus enable faster training and better convergence.

III.2.3. Estimating the separation masks

The separation for each frame is performed by estimating 5 vectors (masks) A. ∈ ℝ"×<, 3 =

1,… , 5 where 5 is the number of speakers in the mixture that is multiplied by the encoder

output w. The mask vectors A. have the constraint that A. ∈ [0,1] . The representation of

each source, E. ∈ 	ℝ"×<, is then calculated by applying the corresponding mask, A. to the

mixture representation w:

 E. = ;	 ⊙ A. (III.4)

Where ⊙ denotes element-wise multiplication. The waveform of each source !.	, 3 = 1,… , 5

is then reconstructed by the decoder:

 !. = E.@ (III.5)

The unit summation constraint in [21], A.
1
.2" = 1 , was applied based on the assumption

that the encoder-encoder architecture can perfectly reconstruct the input mixture. In next

chapter, we will examine the consequence of relaxing this unity summation constraint on

separation accuracy.

III.2.4. Convolutional separation module

 Motivated by the temporal convolutional network [35], we propose a fully-convolutional

separation module that consists of stacked 1-D dilated convolutional blocks, as shown in

figure III.2. Temporal convolutional network (TCN) was proposed as a replacement for RNNs

in various sequence modeling tasks. Each layer in a TCN consists of 1-D convolutional

blocks with increasing dilation factors. The dilation factors increase exponentially to ensure a

sufficiently large temporal context window to take advantage of the long-range dependencies

of the audio source signal, as denoted with different colors in figure III.2. In Conv-TasNet, M

convolutional blocks with dilation factors 1,2,4, … , 2IJ" are repeated R times. The input to

 Chapter III: Conv-TasNet for bird sound separation

	

30

each block is zero padded accordingly to ensure the output length is the same as the input.

The output of the TCN is passed to a convolutional block with kernel size block 1(1×1 −

LMNO block, also known as pointwise convolution) for mask estimation. The 1×1 − LMNO

block together with a nonlinear activation function estimates 5 mask vectors for the 5 target

sources.

Figure III.2. A flowchart of the proposed system

 Figure III.3 shows the design of each 1-D convolutional block. The design of the 1-D

convolutional blocks follows [36], where a residual path and a skip-connection path are

applied: the residual path of a block serves as the input to the next block, and the skip-

connection paths for all blocks are summed up and used as the output of the TCN. To further

decrease the number of parameters, depthwise separable convolution (P − LMNO ⋅) is used to

replace standard convolution in each convolutional block.

 Chapter III: Conv-TasNet for bird sound separation
	

	 31

Figure III.3. The design of 1-D convolutional block

 Depthwise separable convolution (also referred to as separable convolution) has proven

effective in image processing tasks [37] and neural machine translation tasks [38]. The

depthwise separable convolution operator decouples the standard convolution operation into

two consecutive operations, a depthwise convolution (Q − LMNO ⋅) followed by pointwise

convolution (1×1 − LMNO ⋅):

Q − LMNO R,S = LMNLT# UV ⊛ XV ,					Y = 1, … , Z (III.6)

P − LMNO R,S, [= Q − LMNO R,S ⊛ [(III.7)

Where R ∈ ℝ\×I is the input to P − LMNO ⋅ , S ∈ ℝ\×] is the convolution kernel with size

P, UV ∈ ℝ"×I and XV ∈ ℝ"×] are the rows of matrices Y and K , respectively, [∈ ℝ\×^×" is

the convolution kernel with size 1, and ⊛ denotes the convolution operation. In other words,

the Q − LMNO ⋅ operation convolves each row of the input Y with the corresponding row of

matrix K, and the 1×1 − LMNO	block linearly transforms the feature space. In comparison

with the standard convolution with kernel size _ ∈ ℝ\×^×] depthwise separable convolution

 Chapter III: Conv-TasNet for bird sound separation

	

32

only contains `×a + `×c parameters, which decreases the model size by a factor of ^×]
^d]

≈

a when c ≫ a.

A nonlinear activation function and a normalization operation are added after both the first

1×1 − LMNO and Q − LMNO blocks respectively. The nonlinear activation function is the

parametric rectified linear unit (PReLU) [39]:

aghi> , =
,,												3j	, ≥ 0
l,, M#ℎhn;3!h	

 (III.8)

Where l ∈ ℝ is a trainable scalar controlling the negative slope of the rectifier. The choice of

the normalization method in the network depends on the causality requirement. For noncausal

configuration, we found empirically that global layer normalization (gLN) outperforms all

other normalization methods. In gLN, the feature is normalized over both the channel and the

time dimensions:

oiZ p =
q − r p

@Tn p + s
⊙ 	t + u (III.9)

r p =
1

Z:
p

<+

 (III.10)

@Tn p =
1

Z:
	 q − r p v

<+

 (III.11)

Where p ∈ ℝ<×+ is the feature, t, u ∈ ℝ<×" are trainable parameters, and s is a small

constant for numerical stability. This is identical to the standard layer normalization applied in

computer vision models where the channel and time dimension correspond to the width and

height dimension in an image [40]. In causal configuration, gLN cannot be applied since it

relies on the future values of the signal at any time step. Instead, we designed a cumulative

layer normalization (cLN) operation to perform step-wise normalization in the causal system:

 Chapter III: Conv-TasNet for bird sound separation
	

	 33

LiZ w6 =
w6 − r wxy6

@Tn wxy6 + s
⊙ 	t + u (III.12)

r wxy6 =
1

Z8
wxy6

<6

 (III.13)

@Tn wxy6 =
1

Z8
wxy6 − r wxy6

v

<6

 (III.14)

Where w6 ∈ ℝ<×" is the k-th frame of the entire feature F, wxy6 ∈ ℝ<×6 corresponds to the

feature of k frames w", … , w6 and t, u ∈ ℝ<×" are trainable parameters applied to all frames.

To ensure that the separation module is invariant to the scaling of the input, the selected

normalization method is applied to the encoder output w before it is passed to the separation

module.

 At the beginning of the separation module, a linear 1×1 − LMNO block is added as a

bottleneck layer. This block determines the number of channels in the input and residual path

of the subsequent convolutional blocks. For instance, if the linear bottleneck layer has B

channels, then for a 1-D convolutional block with H channels and kernel size P, the size of the

kernel in the first 1×1 − LMNO block and the first Q − LMNO block should be z ∈ ℝ{×^×" and

S ∈ ℝ^×] respectively, and the size of the kernel in the residual paths should be [|} ∈

ℝ^×{×". The number of output channels in the skip-connection path can be different than B,

and we denote the size of kernels in that path as [~� ∈ ℝ
^×~�×" .

III.3. Conclusion

 In this chapter, we introduced the Conv-TasNet audio source separation system. We have

presented in detail the different Conv-Tasnet component blocks namely the encoder/decoder

and the separation module based on the CNN 1D convolutional neural network.

 In the next chapter, we will implement this system and apply it on a database of popular

speech mixtures, then we will apply it on our own database of bird sounds.

CHAPTER IV

Experiment and results

 Chapter IV: Experiments and results
	
	

	
	

34

IV.1. Introduction

 In this last chapter, we will present the implementation of Conv-TasNet on our dataset of

birds that we composed from xeno-canto.org. We will train our system and test it using a

python code. Next, we will discuss the results achieved and the performance of our bird sound

separation system.

IV.2. Programming Languages

 The programing and development of the project has been made using Python and run the

code using Shell.

 Python 87.5 % Shell 12.5 %

IV.2.1. Presentation of programming languages:

A. What is Shell language?

 At its base, a shell is simply a macro processor that executes commands. The term macro

processor means functionality where text and symbols are expanded to create larger

expressions.

 A Unix shell is both a command interpreter and a programming language. As a command

interpreter, the shell provides the user interface to the rich set of GNU utilities. The

programming language features allow these utilities to be combined. Files containing

commands can be created, and become commands themselves. These new commands have

the same status as system commands in directories such as /bin, allowing users or groups to

establish custom environments to automate their common tasks.

 Shells provide a small set of built-in commands (builtins) implementing functionality

impossible or inconvenient to obtain via separate utilities. like, cd, bash 1, pwd.

Shell language is available on Linux and Mac OS and don’t exist on Windows.

																																																													
1 Bash is a command language interpreter, for the GNU operating system.

Chapter IV: Experiments and results
	

	
	

35

B. What is Python?

 Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic

binding, make it very attractive for Rapid Application Development, as well as for use as a

scripting or glue language to connect existing components together. Python's simple, easy to

learn syntax emphasizes readability and therefore reduces the cost of program maintenance.

Python supports modules and packages, which encourages program modularity and code

reuse. The Python interpreter and the extensive standard library are available in source or

binary form without charge for all major platforms, and can be freely distributed.

 Often, programmers fall in love with Python because of the increased productivity it

provides. Since there is no compilation step, the edit-test-debug cycle is incredibly fast.

Debugging Python programs is easy a bug or bad input will never cause a segmentation fault.

Instead, when the interpreter discovers an error, it raises an exception. When the program

doesn't catch the exception, the interpreter prints a stack trace. A source level debugger allows

inspection of local and global variables, evaluation of arbitrary expressions, setting

breakpoints, stepping through the code a line at a time, and so on. The debugger is written in

Python itself, testifying to Python's introspective power. On the other hand, often the quickest

way to debug a program is to add a few print statements to the source the fast edit-test-debug

cycle makes this simple approach very effective.

 DL has become one of fastest-moving areas of IT and one of Python’s star use cases. The

vast majority of the libraries used for DL have Python interfaces, making the language the

most popular high-level command interface to for DL libraries and other numerical

algorithms.

C. Installation of Python

 As we know python have two different versions (python 2 and python 3) .In this section

we will explain briefly how to download and install python3 for windows.

 To install Python for Microsoft Windows (7, 8,10) download latest version of python from

here : http://www.python.org/downloads/windows

If your browser asks whether to save or keep your file, choose to save it.

 Chapter IV: Experiments and results
	
	

	
	

36

 Once you’ve downloaded the Python for Windows installation file you should be

prompted to run it. If not, open your Downloads folder and double-click the file. Now, follow

the installation instructions:

• Select Add python to path and then click Install Now.

• For the optional Features you should select pip2.

• When asked whether to allow the program to make changes to your computer, choose

Next

• Click Close once installation finishes, and you should see a Python 3 entry in your

Windows Start menu.

Figure IV.1. Python installation

 When installing Python, you’ll also install the IDLE program, which is the Integrated

DeveLopment Environment that lets you write programs for Python.

 See the annex, there is a detailed explanation of how to install python for Mac OS, You

can also install Anaconda, It contains python and DL Tools. See installation steps from here:

https://docs.anaconda.com/anaconda/install/

																																																													
2	Pip	is	the	package	installer	for	Python.	Which	can	download	and	install	other	python	packages.	

Chapter IV: Experiments and results
	

	
	

37

D. Used packages

The following packages were used in our work:

• PyTorch: module is a Python based framework for programming neural networks,

that contains implementation of linear, LSTM, BLSTM, convolutional layers,

backpropagation algorithms and loss functions.

• CUDA: NVIDIA’s CUDA Python provides a driver and runtime API for existing

toolkits and libraries to simplify GPU-based accelerated processing.

• Asteroid: PyTorch-based audio source separation toolkit for researchers.

• Soundfile: package is used for loading mixtures from sound files in dataset folders

and for writing outputs of testing.

• Numpy: package is used for math.

• Pandas: a Python package that provides fast, flexible, and expressive data structures

designed to make working with structured and time series data both easy and intuitive.

• Torch: A Tensors and Dynamic neural networks in Python with strong GPU

acceleration.

• CUDA: NVIDIA’s CUDA Python provides a driver and runtime API for existing

toolkits and libraries to simplify GPU-based accelerated processing.

• Data loader : This module provides loading files from the dataset which is stored in

the folder structure

IV.2.2. PRESENTATION OF ASTEROID:

 Asteroid is a Pytorch-based audio source separation toolkit that enables fast

experimentation on common datasets. It comes with a source code that supports a large range

of datasets and architectures, and a set of recipes to reproduce some important papers.

Asteroid has several target usage:

• Use asteroid in your own code, as a package.

• Use available recipes to build your own separation model.

• Use pretrained models to process your files.

• Hit the ground running with your research ideas

 Chapter IV: Experiments and results
	
	

	
	

38

A. Installation	

Asteroid is on	the	python	package	index	(PyPI), you can install the latest release with the

instruction:

o pip install asteroid

To run Asteroid on GPU, you will need a CUDA-enabled PyTorch installation.

B. Functionality

Asteroid follows the encoder-masker-decoder approach, and provides various choices of

filterbanks, masker networks, and loss functions. It also provides training and evaluation tools

and recipes for several datasets.

C. Supported Datasets

The following is a list of supported datasets, sorted by task. As you can use asteroid on your

own dataset and for your own task.

o Speech separation

• WSJ0-Mix dataset

• WHAM dataset

• WHAMR dataset

• Kinect-WSJ dataset

• LibriMix dataset

• SMS_WSJ dataset

o Speech enhancement

• DNS Challenge’s dataset

o Music source separation

• MUSDB18 Dataset

• DAMP-VSEP dataset

o Audio-visual source separation

• AVSpeech dataset

o Environmental sound separation

• FUSS dataset

Chapter IV: Experiments and results
	

	
	

39

IV.2.3. Implementation

 The experiments were performed on a MacBook Pro a computer with i7 core 8G RAM and

256G ROM , the reason for that is that windows can't run shell scripts and also the experiment

is a deep learning project to realize it we will need a computer with high hardware

configuration.

Figure IV.2. The characteristics of the machine used

 Our system is implemented in Python using all libraries mentioned in used package. All

audios are resampled to 16kHz.all others parameters were mentioned in next sections.

Figure IV.3. Typical directory of a recipe

 Chapter IV: Experiments and results
	
	

	
	

40

Implementation has 4 stages as follows:

• Stage 1: Generate mixture.

• Stage 2: Gather data information into text files.

• Stage 3: Train the source separation system.

• Stage 4: Separate test mixtures and evaluate.

 First, we create our dataset. Then, we use the mixture script to generate the data. All the

information required by the dataset’s DataLoader such as file names and paths, sounds

lengths is then gathered into text files under data/. The training stage is finally followed by

the evaluation stage.

 The model class, which is a direct subclass of PyTorch’s nn.Module, is defined in

model.py. It is imported in both training and evaluation scripts. Instead of defining

constants in model.py and train.py, most of them are gathered in a YAML configuration

file conf.yml. An argument parser is created from this configuration file to allow

modification of these values from the command line, with run.sh passing arguments to

train.py. The resulting modified configuration is saved in exp/ to enable future reuse.

Other arguments such as the experiment name, the number of GPUs, etc., are directly passed

to run.sh.

Full python code is written in the annex.

Model architecture:

 The encoder consists of just one convolution and the decoder, symmetrically, of a

transposed convolution. The separation module is a temporal convolutional network,

composed of stacks of convolutional blocks with exponentially increasing dilation factors,

which have both skip connections and residual connections, and ending with a 1x1

convolution followed by a sigmoid that produces the masks for each of the sources. A

convolutional block uses 1x1 convolutions and a depthwise convolution, to reduce the number

of parameters, as well as group layer normalization and PReLU activations. The model is

trained using SI-SDR as the cost function.

Chapter IV: Experiments and results
	

	
	

41

IV.3. Experiment:

Dataset: Bird Sound Dataset (BSD)

 We decided to gather our data from xeno-canto.org, which is a popular open source bird

recording website, with over 500,000 recordings. We liked this source because we could

specifically pick the birds, size, and quality of our data.

 Through a Python wrapper from Github we downloaded our dataset from xeno-canto.org

composed of bird sounds. We chose to build our dataset to look like the Wall Street Journal

(WSJ0) dataset. With same characteristic exist in WSJ0.

 We evaluated our system on two-bird and three-bird sound separation problems using the

BSD-2mix and BSD-3mix datasets. 3 hours of training and 1 hour of validation data are

generated from birds in datasets. The sound mixtures are generated by randomly selecting

vocalizations from different birds in the bird sound dataset (BSD)	and mixing them at random

signal-to-noise ratios (SNR) between -5 dB and 5 dB. 30 min evaluation set is generated in

the same way. All the waveforms are resampled at 8 kHz.

IV.3.1. Experiment configurations:

 The networks are trained for 10 epochs on 4-second long segments. The initial learning

rate is set to 1"#$. The learning rate is halved if the accuracy of validation set is not improved

in 3 consecutive epochs. Adam 3[41] is used as the optimizer. A 50% stride size is used in the

convolutional autoencoder (i.e. 50% overlap between consecutive frames). Gradient clipping

with maximum %&-norm of 5 is applied during training. The hyperparameters of the network

are shown in table I

																																																													
3	Adam	optimization	is	a	stochastic	gradient	descent	method	that	is	based	on	adaptive	estimation	of	first-order	
and	second-order	moments.	

 Chapter IV: Experiments and results
	
	

	
	

42

Symbol Description

N Number of filters in autoencoder

L Length of the filters (in samples)

B Number of channels in bottleneck
and the residual paths’ 1	×	1 − *+,-	blocks

Sc Number of channels in skip-connection
paths’ 1	×	1 − *+,- blocks

H Number of channels in convolutional blocks

P Kernel size in convolutional blocks

X Number of convolutional blocks in each repeat

R Number of repeats

Table IV.1. Hyperparameters of the network

Training objective :
 The objective of training the end-to-end system is maximizing the scale-invariant source-to

noise ratio (SI-SNR), which has commonly been used as the evaluation metric for source

separation replacing the standard source-to-distortion ratio. SI-SNR is defined as:

	

./0123/ ∶=
., . .

.
"	789:3 ∶= . − ./0123/

;< − ;=> ∶= 10@+ABC
./0123/

&

"789:3 &

Where . ∈ 	ℝB×F and . ∈ 	ℝB×F are the estimated and original clean sources, respectively,

and . & = 	 ., . denotes the signal power. Scale invariance is ensured by normalizing . and

. to zero-mean prior to the calculation. Audio-level permutation invariant training (uPIT) is

applied during training to address the source permutation problem.

Evaluation metrics:

 We report the scale-invariant signal-to-noise ratio improvement (SI-SNRi) and signal-to-

distortion ratio improvement (SDRi) as objective measures of separation accuracy. The

reported improvements in tables indicate the additive values over the original mixture. In

addition to the distortion metrics,

Chapter IV: Experiments and results
	

	
	

43

IV.4. Results
 Figure IV.3 visualizes all the internal variables of Conv-TasNet for one example mixture

sound with two overlapping birds sound (denoted by red and blue). The encoder and decoder

basis functions are sorted by the similarity of the Euclidean distance of the basis functions

found using the unweighted pair group method with arithmetic mean (UPGMA) method [42].

The basis functions show a diversity of frequency and phase tuning. The representation of the

encoder is colored according to the power of each bird’s sound at the corresponding basis

output at each time point, demonstrating the sparsity of the encoder representation. As can be

seen in Figure IV.3, the estimated masks for the two sounds highly resemble their encoder

representations, which allows for the suppression of the encoder outputs that correspond to

the interfering sound and the extraction of the target sound in each mask. The separated

waveforms for the two birds sound are estimated by the linear decoder, whose basis functions

are shown in Figure IV.3. The separated waveforms are shown on the right.

Figure IV.3. Sound Separation Architecture

 Figure IV.3. demonstrate a visualization of the encoder and decoder basis functions,

encoder representation, and source masks for a sample 2-birds sound mixture. The birds are

shown in red and blue. The encoder representation is colored according to the power of each

birds at each basis function and point in time. The basis functions are sorted according to their

Euclidean similarity and show diversity in frequency and phase tuning

 Chapter IV: Experiments and results
	
	

	
	

44

Non-negativity of the encoder output

 The non-negativity of the encoder output was enforced in [21], [43] using a rectified-linear

nonlinearity (ReLU) function. This constraint was based on the assumption that the masking

operation on the encoder output is only meaningful when the mixture and speaker waveforms

can be represented with a non-negative combination of the basis functions, since an

unbounded encoder representation may result in unbounded masks. However, by removing

the nonlinear function H, another assumption can be made: with an unbounded but highly

overcomplete representation of the mixture, a set of non-negative masks can still be found to

reconstruct the clean sources. In this case, the overcompleteness of the representation is

crucial.

If there exist only a unique weight feature for the mixture as well as for the sources, the non-

negativity of the mask cannot be guaranteed. Also note that in both assumptions, we put no

constraint on the relationship between the encoder and decoder basis functions U and V,

meaning that they are not forced to reconstruct the mixture signal perfectly.

One way to explicitly ensure the autoencoder property is by choosing V to be the pseudo-

inverse of U (i.e. least square reconstruction). The choice of encoder/decoder design affects

the mask estimation: in the case of an autoencoder, the unit summation constraint must be

satisfied; otherwise, the unit summation constraint is not strictly required. To illustrate this

point, we compared five different encoder-decoder configurations:

1) Linear encoder with its pseudo-inverse (Pinv) as decoder, i.e. G = 	H IFI #BIF and

H = GI, with Softmax function for mask estimation.

2) Linear encoder and decoder where G = HJ and H = GI, with Softmax or Sigmoid

function for mask estimation.

3) Encoder with ReLU activation and linear decoder where G = >"%J	(HJ) and H =

GI, with Softmax or Sigmoid function for mask estimation.

Separation accuracy of different configurations in table III shows that pseudo-inverse

autoencoder 4leads to the worst performance, indicating that an explicit autoencoder

configuration does not necessarily improve the separation score in this framework. The

performance of all other configurations is comparable. Because linear encoder and decoder

																																																													
4	Autoencoders are a special class of neural networks designed to find an efficient representation of
data by learning correlations between the data points.

Chapter IV: Experiments and results
	

	
	

45

with Sigmoid function achieves a slightly better accuracy over other methods, we used this

configuration in all the following experiments.

Encoder Mask
Model

Size

SI-SNRI

(dB)

SDRi

(dB)

Pinv

Softmax 12.1

12.4

Linear

Softmax
Sigmoid

1.5M

12.9
13.1

13.2
13.4

ReLU Softmax

Sigmoid

 13.0
12.9

13.3
13.2

Table IV.2. Separation score for different system configurations

IV.4.1. Optimizing the network parameters:

We evaluate the performance of Conv-TasNet on two bird separation tasks as a function of

different network parameters. Table II shows the performance of the systems with different

parameters, from which we can conclude the following statements:

• Encoder/decoder: Increasing the number of basis signals in the encoder/decoder increases

the overcompleteness of the basis signals and improves the performance.

• Hyperparameters in the 1-D convolutional blocks: A possible configuration consists of a

small bottleneck size B and a large number of channels in the convolutional blocks H.

where the ratio between the convolutional block and the bottleneck M/O was found to be

best around 5. Increasing the number of channels in the skip-connection block improves

the performance while greatly increases the model size. Therefore, we selected a small

skip-connection block as a trade-off between performance and model size.

• Number of 1-D convolutional blocks: When the receptive field is the same, deeper

networks lead to better performance, possibly due to the increased model capacity.

• Size of receptive field: Increasing the size of receptive field leads to better performance,

which shows the importance of modeling the temporal dependencies in the audio signal.

 Chapter IV: Experiments and results
	
	

	
	

46

• Length of each segment: Shorter segment length consistently improves performance. Note

that the best system uses a filter length of only 2 ms (P
QR
	= 	

BS

TCCC
= 	0: 002.),

• Causality: Using a causal configuration leads to a significant drop in the performance.

This drop could be due to the causal convolution and/or the layer normalization

operations.

N L B H WX P X R
Normali-

zation
Causal Receptive

field (s)
Model

size

SI-
SNRi
(dB)

SDRi
(dB)

128

256

512

40

40

40

128

128

128

256

256

256

128

128

128

3

3

3

7

7

7

2

2

2

gLN

gLN

gLN

×

×

×

1.28

1.28

1.28

1.5M

1.5M

1.7M

13.0

13.1

13.3

13.2

13.3

13.5

512

512

512

512

512

512

40

40

40

40

40

40

128

128

128

128

128

128

256

512

512

256

512

512

256

128

512

256

256

512

3

3

3

3

3

3

7

7

7

7

7

7

2

2

2

2

2

2

gLN

gLN

gLN

gLN

gLN

gLN

×

×

×

×

×

×

1.28

1.28

1.28

1.28

1.28

1.28

2.4M

3.1M

6.2M

3.2M

6.0M

6.5M

13.0

13.3

13.5

13.0

13.4

13.2

13.3

13.6

13.8

13.3

13.7

13.5

512

512

512

40

40

40

128

128

128

512

512

512

128

128

128

3

3

3

6

4

8

4

6

3

gLN

gLN

gLN

×

×

×

1.27

0.46

3.83

5.1M

5.1M

5.1M

14.1

13.9

14.4

14.4

14.2

14.7

512

512

512

32

16

16

128

128

128

512

512

512

128

128

128

3

3

3

8

8

8

3

3

3

gLN

gLN

cLN

×

×

YES

3.06

1.53

1.53

5.1M

5.1M

5.1M

14.7

15.1

10.6

15.0

15.4

11.0

Table IV.3. The effect of different configurations in Conv-TasNet

IV.4.2. Comparison of Conv-TasNet on other datasets
 We compared the separation accuracy of Conv-TasNet method using SDRi and SI-SNRi

on other datasets (WSJ0-2Mix, MiniLibriMix) with our dataset BSD.	Unlike our dataset, the

two other datasets composed of utterances from different speakers (speech)

Chapter IV: Experiments and results
	

	
	

47

We list the best results that have been obtained in the experiments. Except for wsj0 dataset,

we listed the results that have been reported in literature .The configurations of Conv-TasNet

is the same in all experiments. Table IV.4 compares the performance of Conv-TasNet on the

three datasets.

Dataset Method SI-SNRi (dB) SDRi (dB)

BSD 15,1 15.4

MiniLibriMix Conv-TasNet 14.4 14.7

WSJ0-2Mix 15.3 15.6

Table IV.4. Comparison of Conv-TasNet on other datasets.

 The table IV.4 shows that the MiniLibriMix have the worst performance because of her

small size. For this dataset size is important to assure a better performance when we train the

network. As shown too that the using of WSJ0-2Mix leads to the best performance and the

performance of our dataset is comparable.

IV.5. Conclusion

 In this last chapter we studied the fully-convolutional time-domain audio separation

network (Conv-TasNet) for bird sounds separation. A deep learning audio separation system

that directly operates on the sound. We implement the network, train and evaluate it and show

the results. This allowed to a better understanding of the system studied (Conv-TasNet).

Experiments results shown that the performance of separation sounds is significantly

improved especially in noisy conditions. In addition the effectiveness of the Conv-TasNet

system for separation bird sounds has been proven and given an acceptable results compared

to other sounds especially with speech.

	 48

GENERAL CONCLUSION

In order to achieve good performance in identifying bird species based on their

sounds,	the separation of bird sounds is a very important and crucial step

In this thesis, we have presented a robust bird sound separation system. a fully-

convolutional neural network system in time-domain named (Conv-TasNet)

composed of three main blocks: an encoder, a separation model based on the neural

network CNN 1D and a decoder

This work was based on four main chapters:

In the first chapter, we studied the audio source separation. After that, we made a state

of the art about the related methods on audio separation found in the literature.

In the second chapter, we first presented the deep learning with her different

techniques, then, we studied the different types of DL networks and focused on the

CNN.

In the third chapter, we explained in detail each step of the proposed bird sound

separation system the Conv-TasNet.

In the last chapter, we implemented the Conv-TasNet system. Then, we evaluated the

performance proposed system. after that, we presented the results obtained and

compared it with similar works

The results obtained demonstrated the effective of the Conv-TasNet system and works

satisfactorily for bird sound separation.	

In conclusion, Conv-TasNet represents a significant step toward the realization of

audio source separation algorithms and opens many future research directions that

would further improve its accuracy, speed, and computational cost, which could

eventually make automatic audio source separation a common and necessary feature

of every audio processing technology designed for real-world applications.

	

	 49

APPENDIX

A. How to Install Python on Macintosh
	

Python is one of the oldest programming languages around. However, with the onset

of Machine Learning, Python has been given a new lease of life. It has become a

popular tool for both Machine Learning and Deep Learning.

Currently, Python is available as two distinct versions. That is Python 2

and Python 3. In this tutorial, you are going to learn how install both

versions on your system.

Selecting a Version of Python

With two great choices, how do you decide on which one to use? It all comes down

to compatibility. Certain programmes or libraries that you want to use in your project

may only be compatible with one version of Python.

So keep your end goal in mind when selecting a version. If you want to have more

flexibility when it comes to Python projects, just download both versions.

Begin Installation

1. Visit https://www.python.org/

	

	 50

	

	

2. Select the 'Downloads' tab. A drop down menu will appear.

	

	

	

3. To the right of the drop down menu, you will see the latest versions of python

that are available for MAC. The first button provides the latest version of

Python 3 and the second button provides the option for the latest version of

Python 2. Once you click an option, the download will begin.

	

	 51

	

	

4. Once installation is complete, double click the package in the download

bar. This will start the installation process.

	

	

	

	

	

	

	

	

	

	

	

	

	 52

	

5. In the dialogue box that pops up you will be shown a welcome notice, select

"Continue".

6. In the new dialogue box, you will be presented with important

information regarding the changes made to Python, once again select

"Continue".

7. Now you will be shown the terms and conditions for using Python. Select

"Continue".

8. A mini dialogue box will appear requesting you to agree to the terms and

conditions listed. Select "Agree".

9. Finally you will be told how much memory will be used on your system.

Select "install"

10. For security purposes, the system will request you to enter your user

name and password. Enter the details, then select "Install Software"

11. Now the dialogue box will display a progress bar to indicate how much of

the installation is complete. This should only take a few minutes depending

on your system's memory and speed.

12. Once the installation is complete, you will be presented with a dialogue box

indicating that your installation was successful.

Test your Installation

Now that you have downloaded Python, test it to make sure it is working correctly.

• Open the Mac Terminal.

• Type python2 (or python3, depending on the version you installed) and press

enter.

• The version of your Python installation should show up

	

	 53

git clone https://github.com/asteroid-
team/asteroid cd asteroid

pip install-e.

B. Asteroid:
	

Installation :

	

By following the instructions below, first install PyTorch and then Asteroid (using

either pip/dev install). We recommend the development installation for users likely to

modify the source code.

CUDA and PyTorch

Asteroid is based on PyTorch. To run Asteroid on GPU, you will need a CUDA-

enabled PyTorch installation. Visit this site for the instructions :

Pip

Asteroid is regularly updated on PyPI, install the latest stable version with:

Development installation

For development installation, you can fork/clone the GitHub repo and locally install it
with pip:

This is an editable install (-e flag), it means that source code changes (or branch

switching) are automatically taken into account when importing asteroid.

You can also use conda env create -f environment.yml to create a Conda env

directly.

pip install asteroid

	

	 54

Asteroid Recipe:

A recipe is a set of scripts that use Asteroid to build a source separation system. our

directory corresponds to BSD dataset and each subdirectory corresponds corresponds

to our system build on this dataset.

Our recipe is organized as follows:

How our recipe work:

As we said we created our recipe in the same way exist in asteroid. Now we explain

how our work:

• There is a master file, run.sh, from which all the steps are run (install

dependencies, download data, create dataset, train a model evaluate it and so

on...).

- We change some variables in the top of the file (comments are around it) like

data directory, python path etc.

- This script is controlled by several arguments. Among them, stage controls

from where do you start the script. For example you already generated the

data? No need to do it again, set stage=3!

- All steps until training are dataset-specific and the corresponding scripts are

stored in ./local.

	

	 55

o The training and evaluation scripts are then called from run.sh

- There is a script, model.py, where the model should be defined along with the

System subclass used for training (if needed).

- We wrap the model definition in one function (make_model_and_optimizer).

The function receives a dictionary which is also saved in the experiment

folder. This make checkpoint restoring easy without any additional

constraints.

- We also write a function to load the best model (load_best_model) after

training. This is useful to load the model several time (evaluation, separation

of new examples. . .).

• The arguments flow through bash/python/yaml in a specific way, which was

designed by us and suits our use- cases until now:

- The very first step is the local/conf.yml files where is a hierarchical

configuration file.

- On the python side: This file is parsed as a dictionary of dictionary in

training.py From this dict, we create an argument parser which can accept all

the second-level keys from the dictionary (so second-level keys should be unique)

as arguments and has the default values from the conf.yml file.

- On the bash side: we also parse arguments from the command line (using

utils/parse_options.sh). The arguments above the line.

utils/parse_options.sh can be parsed, the rest are fixed. Most arguments

will be passed to the training script. Others control the data preparation, GPU

usage etc.

- In light of all this the config file should have sensible default values that shouldn’t

be modified by hand much. The quickly configurable part of the recipe is added to

run.sh (you want to experiment with the batch size, add an argument in and pass

it to python. If you want it fixed, no need to put it in bash, the conf.yml file keeps

it for you.) This makes it possible to directly identify the important parts of the

experiment, without reading lots of lines of argparser or bash arguments.

	

	 56

C. Python codes :

Encoder/Decoder :

Network architecture :

	

	 57

Conv-TasNet Config: (Training config, optimizer….)

Exemple for train.py and conf.yml :

For more details about scripts visit:

• https: //github.com/asteroid-team/asteroid
• https: //github.com/kaituoxu/Conv-TasNet

	

	 58

Training experiment: (training of MiniLibriMixDataset)

	

	 59

BIBLIOGRAPHY

[1] Kolbæk, M., Yu, D., Tan, Z. H., & Jensen, J. (2017). Multitalker speech

separation with utterance-level permutation invariant training of deep recurrent

neural networks. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 25(10), 1901-1913.

[2] Luo, Y., & Mesgarani, N. (2019). Conv-tasnet: Surpassing ideal time–frequency

magnitude masking for speech separation. IEEE/ACM transactions on audio,

speech, and language processing, 27(8), 1256-1266.

[3] Stoller, D., Ewert, S., & Dixon, S. (2018). Wave-u-net: A multi-scale neural

network for end-to-end audio source separation. arXiv preprint arXiv:1806.03185.

[4] Cherry, E. C. (1953). Some experiments on the recognition of speech, with one

and with two ears. The Journal of the acoustical society of America, 25(5), 975-

979.

[5] Comon, P., & Jutten, C. (Eds.). (2010). Handbook of Blind Source Separation:

Independent component analysis and applications. Academic press.

[6] Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and

applications. Neural networks, 13(4-5), 411-430.

[7] Wang, D., & Brown, G. J. (2006). Computational auditory scene analysis:

Principles, algorithms, and applications. Wiley-IEEE press.

[8] Plumbley, M. D., Cichocki, A., & Bro, R. (2010). Non-negative mixtures. In

Handbook of Blind Source Separation (pp. 515-547). Academic Press.

[9] Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: An adaptive

algorithm based on neuromimetic architecture. Signal processing, 24(1), 1-10.

[10] Cichocki, A., Bogner, R. E., Moszczyński, L., & Pope, K. (1997). Modified

Herault–Jutten algorithms for blind separation of sources. Digital signal

processing, 7(2), 80-93.

[11] Prasad, R., Saruwatari, H., & Shikano, K. (2004). An ICA algorithm for

separation of convolutive mixture of speech signals. International Journal of

Information Technology, 2(4), 273-283.

	

	 60

[12] Pedersen, M. S., Wang, D., Larsen, J., & Kjems, U. (2008). Two-microphone

separation of speech mixtures. IEEE Transactions on Neural Networks, 19(3),

475-492.

[13] Jan, T., Wang, W., & Wang, D. (2011). A multistage approach to blind separation

of convolutive speech mixtures. Speech Communication, 53(4), 524-539.

[14] Kim, M., & Park, H. M. (2015). Efficient online target speech extraction using

DOA-constrained independent component analysis of stereo data for robust

speech recognition. Signal Processing, 117, 126-137.

[15] Douglas, S. C., Gupta, M., Sawada, H., & Makino, S. (2007). Spatio–Temporal

FastICA algorithms for the blind separation of convolutive mixtures. IEEE

transactions on audio, speech, and language processing, 15(5), 1511-1520.

[16] Koldovský, Z., & Tichavský, P. (2007). Time-domain blind audio source

separation using advanced ICA methods. In Eighth Annual Conference of the

International Speech Communication Association.

[17] Hsieh, H. L., Chien, J. T., Shinoda, K., & Furui, S. (2009, April). Independent

component analysis for noisy speech recognition. In 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing (pp. 4369-4372). IEEE.

[18] Mohanaprasad, K., & Arulmozhivarman, P. (2013). Comparison of Fast ICA and

gradient algorithms of independent component analysis for separation of speech

signals. Int. J. Eng. Technol, 5(4), 3196-3202.

[19] Weng, C., Yu, D., Seltzer, M. L., & Droppo, J. (2015). Deep neural networks for

single-channel multi-talker speech recognition. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 23(10), 1670-1679.

[20] Hershey, J. R., Chen, Z., Le Roux, J., & Watanabe, S. (2016, March). Deep

clustering: Discriminative embeddings for segmentation and separation. In 2016

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 31-35). IEEE.

[21] Luo, Y., & Mesgarani, N. (2018, April). Tasnet: time-domain audio separation

network for real-time, single-channel speech separation. In 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

(pp. 696-700). IEEE.

[22] Rozenwald, M. B., Galitsyna, A. A., Sapunov, G. V., Khrameeva, E. E., &

Gelfand, M. S. (2020). A machine learning framework for the prediction of

	

	 61

chromatin folding in Drosophila using epigenetic features. PeerJ Computer

Science, 6, e307.

[23] Potok, T. E., Schuman, C., Young, S., Patton, R., Spedalieri, F., Liu, J., ... &

Chakma, G. (2018). A study of complex deep learning networks on high-

performance, neuromorphic, and quantum computers. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 14(2), 1-21.

[24] Koppe, G., Meyer-Lindenberg, A., & Durstewitz, D. (2021). Deep learning for

small and big data in psychiatry. Neuropsychopharmacology, 46(1), 176-190.

[25] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 770-778).

[26] Saeed, M. M., Al Aghbari, Z., & Alsharidah, M. (2020). Big data clustering

techniques based on Spark: a literature review. PeerJ Computer Science, 6, e321.

[27] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts,

C. (2013, October). Recursive deep models for semantic compositionality over a

sentiment treebank. In Proceedings of the 2013 conference on empirical methods

in natural language processing (pp. 1631-1642).

[28] Batur Dinler, Ö., & Aydin, N. (2020). An optimal feature parameter set based on

gated recurrent unit recurrent neural networks for speech segment detection.

Applied Sciences, 10(4), 1273.

[29] Sadr, H., Pedram, M. M., & Teshnehlab, M. (2019). A robust sentiment analysis

method based on sequential combination of convolutional and recursive neural

networks. Neural Processing Letters, 50(3), 2745-2761.

[30] Gao, C., Yan, J., Zhou, S., Varshney, P. K., & Liu, H. (2019). Long short-term

memory-based deep recurrent neural networks for target tracking. Information

Sciences, 502, 279-296.

[31] Zhou, D. X. (2020). Universality of deep convolutional neural networks. Applied

and computational harmonic analysis, 48(2), 787-794.

[32] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T.

(2018). Recent advances in convolutional neural networks. Pattern Recognition,

77, 354-377.

[33] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning

(Vol. 1, No. 2). Cambridge: MIT press.

	

	 62

[34] Kiranyaz, S., Ince, T., Hamila, R., & Gabbouj, M. (2015, August). Convolutional

neural networks for patient-specific ECG classification. In 2015 37th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (pp. 2608-2611). IEEE.

[35] Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271.

[36] Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ...

& Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv

preprint arXiv:1609.03499.

[37] Chollet, F. (2017). Xception: Deep learning with depthwise separable

convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1251-1258).

[38] Kaiser, L., Gomez, A. N., & Chollet, F. (2017). Depthwise separable convolutions

for neural machine translation. arXiv preprint arXiv:1706.03059.

[39] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision (pp. 1026-1034).

[40] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

[41] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[42] Sokal, R. R. (1958). A statistical method for evaluating systematic relationships.

Univ. Kansas, Sci. Bull., 38, 1409-1438.

[43] Luo, Y., & Mesgarani, N. (2018, September). Real-time single-channel

dereverberation and separation with time-domain audio separation network. In

Interspeech (pp. 342-346).

