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Abstract 
 
Birds are strong indicator for the health of an ecosystem. It is one of the most endangered 

animal species in the world. This make birds very important and need special attention. 

Identify different species and detect bird sounds in mixture recording help to preserve these 

species from extinction and therefore preserve the balance of the ecosystem.  

In this thesis, we propose to apply a fully-convolutional neural network system in time-

domain named (Conv-TasNet) for bird sounds separation. The studied system is composed of 

three main blocks: an encoder, a separation model based on the neural network CNN 1D and a 

decoder 

Experimental results for the bird sounds separation, demonstrate that the methodology 

adopted to separate bird sounds is effective and works satisfactorily. In addition, separation 

performance and environmental noise immunity are significantly improved after the 

application of the Conv-TasNet method, indicating that it is an appropriate approach for 

acoustic recognition of birds in complex environments. 

 

Key words: Bird sounds separation, convolutional neural network, CNN, Conv-TasNet, deep 

learning, time-domain. 
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 : ملخص

 
الطیور ھي مؤشر قوي على صحة النظام البیئي. إنھا واحدة من أكثر أنواع الحیوانات المھددة بالانقراض في العالم. ھذا 

 مزیجشاف أصوات الطیور في تسجیل الالطیور مھمة للغایة وتحتاج إلى عنایة خاصة. تحدید الأنواع المختلفة واكتیجعل 

 .یساعد في الحفاظ على ھذه الأنواع من الانقراض وبالتالي الحفاظ على توازن النظام البیئي

لفصل أصوات  (Conv-TasNet) یسمىمجال الزمني الفي  ملتفةتطبیق نظام شبكة عصبیة  ، نقترحفي ھذه الأطروحة

 ، ونموذج فصل یعتمد على الشبكة العصبیةجھاز التشفیر رئیسیة: عناصرالطیور. یتكون النظام المدروس من ثلاث 

)CNN 1D (تشفیرجھاز فك ال و. 

 . مرض أظھرت النتائج التجریبیة لفصل أصوات الطیور أن المنھجیة المعتمدة لفصل أصوات الطیور فعالة وتعمل بشكل

-Conv بعد تطبیق طریقة بشكل ملحوظالضوضاء البیئیة  منوالحصانة بالإضافة إلى ذلك، تم تحسین أداء الفصل 

TasNetمما یشیر إلى أنھ نھج مناسب للتعرف الصوتي للطیور في البیئات المعقدة ،. 

 

المجال   ،التعلم العمیق  ، CNN  ،Conv-TasNet، ملتفةفصل أصوات الطیور، الشبكة العصبیة ال الكلمات المفتاحیة :

 .الزمني
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Résumé  

 

Les oiseaux sont de puissants indicateurs de la santé d'un écosystème. C'est l'une des espèces 

animales les plus menacées au monde. Cela rend les oiseaux très importants et nécessite une 

attention particulière. L'identification des différentes espèces et la détection des sons d'oiseaux 

dans l'enregistrement du mélange aident à préserver ces espèces de l'extinction et donc à 

préserver l'équilibre de l'écosystème. 

Dans cette thèse, nous proposons d'appliquer un système de réseau de neurones entièrement 

convolutionnel dans le domaine temporel nommé (Conv-TasNet) pour la séparation des sons 

d'oiseaux. Le système étudié est composé de trois blocs principaux : un encodeur, un modèle 

de séparation basé sur le réseau de neurones CNN 1D et un décodeur. 

Les résultats expérimentaux pour la séparation des sons d'oiseaux, démontrent que la 

méthodologie adoptée pour séparer les sons d'oiseaux est efficace et fonctionne de manière 

satisfaisante. De plus, les performances de séparation et l'immunité au bruit environnemental 

sont considérablement améliorées après l'application de la méthode Conv-TasNet, ce qui 

indique qu'il s'agit d'une approche appropriée pour la reconnaissance acoustique des oiseaux 

dans des environnements complexes. 

 

Mots clés : Séparation des sons d'oiseaux, réseau de neurones convolutifs, CNN, Conv-

TasNet, apprentissage profond, domaine temporel. 
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GENERAL INTRODUCTION 

 

Birds play a vital role in providing ecosystem functions. However, many birds have 

been under threat due to human intrusion on their habitat. 

Therefore, there is an urgent need to a method that helps experts to protect birds.  

There have been many previous approaches identify bird, but they are limited like 

field observation and identifying bird species from their sound. However, the captured 

audio recordings are composed of a mixture of different sounds (bird sound, 

environmental noise...etc)  

Several researchers have been interested in the audio separation of speech but 

according to our research very few have studied the separation of bird sounds 

Audio source separation algorithms can be roughly divided into two categories, time 

frequency (T-F) methods and time-domain (T-D) (or end-to-end) methods. T-F audio 

source separation algorithms aim to estimate the enhanced spectrum of each 

individual source from the mixture spectra [1], and then rebuild the wave- form via 

the inverse short-time Fourier Transform (iSTFT), by combining the enhanced 

magnitude spectrum with either noisy or the modified phase of the mixture. On the 

downside, the erroneous estimation of the phase limits the upper bound of separation 

performance. To solve the phase problem, end-to-end audio source separation 

methods such as the fully-convolutional time-domain audio separation network 

(Conv-TasNet) [2] and Wave-u-net [3] are proposed. 

In this work, we suggest to use Conv-TasNet model for bird sound separation. The 

proposed system is based of three processing stages. The first stage consists an 

encoder module used to transform short segments of the mixture waveform into their 

corresponding representations. This representation is then used to estimate a 

multiplicative function (mask) for each source at each time step in the separation 

stage. Finally, the modified encoder representations are then inverted back to the 

waveforms using a decoder module [2]. The experiments were performed on a dataset 

of birds that we composed from xeno-canto.org. 
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0.1. Objectives:  

     The main objective of this work is to develop a system based on CNN for bird 

sound separation. Long term objective in the project is to develop this system until 

that could identify bird species by their sound in field conditions.  

Others objectives are: 

• Forming a dataset of bird sounds  

• Learn how deep learning and Convolutional neural network work. 

• Learn how to train and test a Convolutional neural network. 

• Implementing of Conv-TasNet model. 

 

0.2. Thesis structure: 

     The remainder of the thesis is organized as follows:  

Chapter I:  Audio separation methods: a state of the art.  The first chapter focused 

on audio source separation and presents the previous methods for separation 

Chapter II: Convolutional Neural Network. This chapter is divided into two parts. 

The first part of this chapter presents the deep learning with her different techniques. 

The second part is devoted to the different types of DL networks, Especially CNN. 

Chapter III: Conv-TasNet for bird sound separation. The third chapter explained 

the Conv-TasNet method and implement it for bird sound separation. 

Chapter IV:  Experiments and results. This chapter is focused on the results 

obtained for our bird sound separation system 

 



	

	

 
 
 
 
 
  
CHAPTER I  

Audio separation methods: a state of art 
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I.1. Introduction  

      Audio source separation methods have recently seen great progress. However, the 

accuracy, latency, and computational cost of such methods remain insufficient. The majority 

of the previous methods have formulated the separation problem through the time-frequency 

representation of the mixed signal, which has several drawbacks, including the decoupling of 

the phase and magnitude of the signal, the sub-optimality of time-frequency representation for 

audio source separation, and the long latency in calculating the spectrograms.  

      Therefore, we investigate end-to-end source separation in the time-domain, which allows 

modelling phase information and avoids fixed spectral transformations. Due to high sampling 

rates for audio, employing a long temporal input context on the sample level is difficult, but 

required for high quality separation results because of long-range temporal correlations. 

 

I.2. Audio source separation 
      Audio source separation aims to extract individual sources from mixtures of multiple 

sound sources, e.g. audio source, noise and music. The problem of separating multiple sound 

sources from sound mixtures is also known as the cocktail party problem [4]: one can imagine 

a situation in which two friends are in a party, with loud music in the background and other 

people around talking simultaneously. Humans have an innate ability to separate audio source 

and sounds in a sound mixture. However, this is not a trivial task for computers.  

I.3. Problem Formulation 

      The audio source separation problem has been considered classically under the framework 

of Blind Source Separation (BSS), which aims to separate the sources with no (or very little) 

information about the sources and mixing channels. 

In the case of R sound sources, the general problem (without noise) to be solved is: 

! " = $	s(")	 (I.1) 

 

Where ) " = (*+ " .		.		. *- " ). 	 	 contains the R independent source signals at the discrete 

time index ",  !(") 	= 	 (!+ " .		.		. !/(")). 		contains the P recorded microphone signals and A is 

the so-called mixing matrix, whose dimension is P × R. In general, both A and are unknown, 

and need to be estimated, given !("). 
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Taking into account the number of microphones and sources, three scenarios can be 

distinguished: 

• Over-determined case: The number of microphones is larger than the number of sources   

(R< P). 

• Determined case: The number of microphones is equal to the number of sources (R = P). 

• Under-determined case: The number of sources is larger than the number of microphones 

(R > P). In many situations, the number of sound sources is not known and may be greater 

than the number of mixtures. The separation of under-determined mixtures requires 

additional assumptions on the source signals than in the over-determined case, in order to 

reduce the possible solutions in the solutions space.  

Depending on the level of surface reflections in an acoustic environment, three types of 

mixtures can be distinguished: 

• Instantaneous mixtures: Each microphone records a signal which is a linear combination 

of the source signals. In other words, A is a scalar matrix. 

• Anechoic mixtures: Each microphone picks up the mixtures of the direct sound from the 

sources. A is a scalar matrix and *(") 	→ 	*(" 		− 	3), where 3 is the time taken for the 

source to reach the microphone. 

• Convolutive mixtures: Room reverberation affects the audio collected by microphones, 

leading to superposition of direct sound sources and time-delayed source component due 

to room reflections. In this case, A is a matrix of filters. Room reflections also depend on 

the experimental methodology employed. Other factors to take into account are 

measurement noise (electrical and acoustical), room geometry, acoustic treatment, source 

directivity, air flow, temperature, humidity, homogeneity and even the presence of people 

and other scatterers.  

Depending on whether the measurement process is linear, we have: 

• Linear case: The mixture is a linear combination of the sources as represented by model 

• Non-linear case: The relation between x and s is characterized by a non-linear function, 

such as 4 = exp	(8), where exp	 ⋅  is an exponential function. 
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Figure I.1: Audio Source Separation 

 

I.4. Conventional Methods of Audio Source Separation 

      Several techniques have been successfully applied to the audio source separation problem. 
For example, binary and soft time-frequency masking, have been applied to the sound mixture 
in the time-frequency domain. Independent component analysis [5, 6] is based on the 
statistical independence between the sound sources and works for over-determined or 
determined mixtures, while Computational Auditory Scene Analysis [7] tackles the problem 
from a human perception point of view. Non-negative Matrix Factorization (NMF) [8] 
factorizes the mixture spectrogram into a dictionary of source components weighted by 
activation coefficients and works well in the case of unsupervised monaural source separation. 
Dictionary learning based sparse representation technique has been used for under-determined 
sound separation.  

      The following sub-sections will briefly present several main approaches that have been 
developed for audio source separation.  

I.4.1. Independent Component Analysis (ICA) 

      In Independent component analysis [5, 6], each mixture x and source s in (I.1), are 

assumed to be a random variable, with zero mean (otherwise they can always be centred by 

subtracting the sample mean). Moreover, the sources s are assumed to be statistically 

independent, which means that the following relation on the probabilities holds for the two 

variables :;, :=: 
> :;, := = :; := 	 (I.2) 

 

Where p indicates the joint density function. When the two variables are Gaussian distributed, 

> :;, :=  would be itself Gaussian, therefore it would not contain any information on the 
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directions of the columns of the mixing matrix A: this implies that the ICA model cannot be 

used for separating multiple Gaussian sources.  

      Two main problems arise when using the ICA techniques: considering that both A and s 

are unknown, it is impossible to estimate the variances of the independent components and 

their order. While on one hand ICA guarantees unique solutions subject to scale and 

permutation ambiguities, the weak point of ICA-based techniques is that, in order to be 

effective, it is necessary to first estimate the number of unknown sources from the mixture 

before performing source separation. Moreover, ICA is not suitable for sources which are 

mutually dependent.  

      The problem of separating mixed audio source signals using ICA has been widely 

investigated. Early papers [9, 10] attempt to recover multiple unknown source signals from 

multiple observed signals that are mixtures of the sources. However, the method in [10] is 

successful in those cases where [9] fails, e.g. for weak signals in a high level of noise. In more 

recent papers, such as [11], ICA is applied to convolutive mixtures of two audio sources, 

picked-up by two-microphones. The sources are extracted one by one in a decreasing order of 

negentropy from the mixed signal.  

      A different approach consists in using ICA techniques for the estimation of Ideal Binary 

Masks (IBMs) in [12, 13]. More specifically, in [12], a method for instantaneous mixing 

model is proposed, which assumes closely spaced microphones. IBMs estimated from the 

outputs of an ICA algorithm are used to extract an arbitrary number of audio source signals. 

In [13], ICA is used to estimate the IBMs for separating the source signals from two-

microphone recordings of convolutive audio source mixtures, but includes an additional step, 

which introduces cepstral smoothing, in order to reduce musical noise caused by the T-F 

masking. Other works [14] aim for a lower computational complexity and a faster 

convergence compared to standard ICA methods [6], where a target audio is extracted and 

recognized from noisy stereo mixtures. 

 

I.4.2. Fast Independent Component Analysis (FastICA) 

      An efficient and popular algorithm for ICA, named FastICA [6], is employed in several 

works [15–18], offering fast convergence, guaranteed global convergence for certain mixing 

conditions and contrasts, and robustness in presence of noise. Convolutive mixtures are 

separated in [15] by using the FastICA algorithm. This algorithm combines multi-channel 

whitening with fixed-point iterations, which allows the sources to be reconstructed as they 
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appear in the observed mixtures. In [16], an enhanced FastICA is employed, showing less 

artifacts compared to the ICA method in [11]. A different approach is followed in [17], where 

ICA is used for identifying the active components of Hidden Markov Models (HMMs).   

 

      The FastICA algorithm in [10] is here used to build independent voice space for talker and 

environment adaptation. The work in [18] is based on the maximisation of non-Gaussianity 

technique using Gradient ICA algorithm and FastICA algorithm, and then compares the 

results of both methods. While FastICA needs less execution time compared to Gradient ICA, 

the latter provides a higher efficiency in separating audio signals. FastICA is also combined 

with sparse component analysis, and applied to over and under-determined mixtures. 

 

I.4.3. Computational Auditory Scene Analysis (CASA) 

      In Computational Auditory Scene Analysis [7] the task is to separate mixtures of sound 

sources like human listeners do. In the same way in which an image is analyzed and processed 

as a whole by sensing the single features, such as edges, textures and colors, the sound 

reaching the human ear is subject to Auditory Scene Analysis (ASA). 

A standard CASA system consists of four stages [7]: 

1) Peripheral analysis: the input signal is processed using an auditory model, resulting in 

a cochleagram (a T-F representation). 

2) Auditory features extraction: some features are generated. 

3) Segmentation: the system generates a collection of segments or contiguous regions in 

a cochleagram. 

4) Grouping: those segments which are likely to come from the same source are grouped 

into a perceptual structure, called stream, corresponding to how the source is mentally 

perceived by the listener. 

      CASA attempts to construct a machine that approaches human performance in ASA by 

using one or two microphones recordings of the acoustic scene, in order to extract individual 

source streams. A typical example in CASA aims to estimate an ideal time-frequency mask, 

built e.g. by using a model of peripheral auditory system called cochleagram, which emulates 

the human frequency selectivity. CASA is one of the first attempts to imitate the human 

auditory system for the purpose of creating an audio source separation system. 
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I.5. Categories of Audio Source Separation 

      Audio source separation algorithms can be roughly divided into two categories, time-

frequency T-F methods and T-D (or end-to-end) methods. T-F audio source separation 

algorithms aim to estimate the enhanced spectrum of each individual source from the mixture 

spectra [1], and then rebuild the wave- form via the iSTFT, by combining the enhanced 

magnitude spectrum with either noisy or the modified phase of the mixture. On the downside, 

the erroneous estimation of the phase limits the upper bound of separation performance. To 

solve the phase problem, end-to-end audio source separation methods such as the fully-

convolutional time-domain audio separation network (Conv-TasNet) [2] and Wave-u-net [3] 

are proposed. 

I.5.1. Time-frequency methods 

      Having a conversation in a complex acoustic environment, with multiple noise sources 

and competing background speakers, is a task humans are remarkably good at. The problem 

that humans solve when they focus their auditory attention towards one audio signal in a 

complex mixture of signals is commonly known as the cocktail party problem. 

      Since the cocktail party problem was initially formalized, a large number of potential 

solutions have been proposed, and the most popular techniques originate from the field of 

Computational Auditory Scene Analysis. In CASA, different segmentation and grouping rules 

are used to group T-F units that are believed to belong to the same speaker the grouped T-F 

units are then used to extract a particular speaker from the mixture signal. Another popular 

technique for multi-talker audio source separation is NMF. 

      The NMF technique uses non-negative dictionaries to decompose the spectrogram of the 

mixture signal into speaker specific activations, and from these activations an isolated target 

signal can be approximated using the dictionaries. For multi-talker audio source separation, 

both CASA and NMF have led to limited success and the most successful techniques, before 

the deep learning era, are based on probabilistic models, such as factorial Gaussian mixture 

models-Hidden Markov models (GMM-HMM) , that model the temporal dynamics and the 

complex interactions of the target and competing audio source signals. Unfortunately, these 

models assume and only work under closed-set speaker conditions, i.e. the identity of the 

speakers must be known a priori. 
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Figure I.2: Bird sound spectrogram decomposition through NMF 

 

There are other methods proposed from some scientists: 

       In Weng et al. [18], which proposed the best performing system in the 2006 monaural 

audio source separation and recognition challenge , the instantaneous energy was used to 

determine the training label assignment, which alleviated the label permutation problem and 

allowed separation of unknown speakers. Although this approach works well for two-speaker 

mixtures, it is hard to scale up to mixtures of three or more speakers. 

 

       Hershey et al. [20] have made significant progress with their Deep Clustering (DPCL) 

technique. In their work, a deep Recurrent Neural Network (RNN) is used to project the audio 

source mixture into an embedding space, where T-F units belonging to the same speaker form 

a cluster. In this embedding space a clustering algorithm (e.g. K means) is used to identify the 

clusters. Finally, T-F units belonging to the same clusters are grouped together and a binary 

mask is constructed and used to separate the speakers from the mixture signal. To further 

improve the model, another RNN is stacked on top of the first DPCL RNN to estimate 

continuous masks for each target speaker. Although DPCL show good performance, the 

technique is potentially limited because the objective function is based on the affinity between 

the sources in the embedding space, instead of the separated signals themselves. That is, low 

proximity in the embedding space does not necessarily imply perfect separation of the sources 

in the signal space. 
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I.5.2. Time-domain methods 

A. Wave-u-net  

      The Wave-U-Net is a neural network applicable to audio source separation tasks,	which 

directly separates a time-domain signal into source signals and works directly on the raw 

audio waveform. The Wave-U-Net is an adaptation of the U-Net architecture to the one-

dimensional time domain to perform end-to-end audio source separation and has an encoder-

decoder architecture.  

      As shown in Figure (I.3), Wave-U-Net architecture computes an increasing number of 

higher-level features on coarser time scales using down-sampling blocks. These features are 

combined with the earlier computed local, high-resolution features using up-sampling blocks, 

yielding multi-scale features which are used for making predictions. The network has L levels 

in total, with each successive level operating at half the time resolution as the previous one. 

For K sources to be estimated, the model returns predictions in the interval(−1; 	1), one for 

each source audio sample [3]. 

 

 

Figure I.3: Wave-u-Net architecture 
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B. TASNET  

      Time-domain Audio Separation Network (TasNet) is a neural network that directly 

models the mixture waveform using an encoder-decoder framework, and performs the 

separation on the output of the encoder. In this framework, the mixture waveform is 

represented by a nonnegative weighted sum of basis signals, where the weights are the outputs 

of the encoder, and the basis signals are the filters of the decoder. The separation is done by 

estimating the weights that correspond to each source from the mixture weight. Because the 

weights are nonnegative, the estimation of source weights can be formulated as finding the 

masks which indicate the contribution of each source to the mixture weight, similar to the T-F 

masks that are used in Short-Time Fourier Transform (STFT) systems. The source waveforms 

are then reconstructed using the learned decoder. Since TasNet operates on waveform 

segments that can be small, the system can be implemented in real-time with very low 

latency. Also TasNet outperforms the state-of-art STFT-based system in applications that do 

not require real-time processing. 

      The structure of the network contains three parts: an encoder for estimating the mixture 

weight, a separation module, and a decoder for source waveform reconstruction. The 

combination of the encoder and the decoder modules construct a nonnegative auto encoder for 

the waveform of the mixture, where the nonnegative weights are calculated by the encoder 

and the basis signals are the 1-D filters in the decoder. The separation is performed on the 

mixture weight matrix using a subnetwork that estimates a mask for each source. As shown in 

Figure (I.4) [21]. 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4: Time-domain Audio Separation Network 
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I.6. Conclusion 

      Powerful audio source processing in a real sound environment usually requires automatic 

audio source separation. Due to the importance of this research topic to language processing 

technology, many methods to solve this problem have been proposed as we saw in the first 

chapter. However, with this remarkable progress in audio source separation methods, they are 

still insufficient, because we haven't seen a method for separating some other audio sources. 

Therefore, until today there is no separation method for bird sounds.  

      In next chapter, we will present the deep learning with her different techniques. In 

addition, we will study the different types of DL networks, Especially CNN. 
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II.1. Introduction  
      In this chapter, we present machine learning in general, deep learning, 2D convolutional 

neural networks CNN, and finally 1D convolutional neural network. 

 

II.2.    Machine and Deep learning 

      Recently, machine learning (ML) has become very widespread in research and has been 

incorporated in a variety of applications, including text mining, spam detection, video 

recommendation, image and audio classification, and multimedia concept retrieval [22]. 

Among the different ML algorithms, deep learning (DL) is very commonly employed in these 

applications. Another name for DL is representation learning (RL). The continuing 

appearance of novel studies in the ends of deep and distributed learning is due to both the 

unpredictable growth in the ability to obtain data and the amazing progress made in the 

hardware technologies, e.g. High Performance Computing (HPC) [23]. 

      DL is derived from the ML but considerably outperforms its predecessors. Moreover, DL 

employs transformations and graph technologies simultaneously in order to build up multi-

layer learning models. The most recently developed DL techniques have obtained good 

outstanding performance across a variety of applications, including audio and audio source 

processing, visual data processing, natural language processing (NLP), among others [24].  

In the field of ML, DL, due to its considerable success, is currently one of the most prominent 

research trends. In this section, an overview of DL is presented that adopts various 

perspectives such as the main concepts, architectures, challenges, applications, computational 

tools and evolution matrix. Convolutional neural network (CNN) is one of the most popular 

and used of DL networks. Because of CNN, DL is very popular nowadays. The main 

advantage of CNN compared to its predecessors is that it automatically detects the significant 

features without any human supervision which made it the most used. Therefore, we have dug 

in deep with CNN by presenting the main components of it.  
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. Figure II.1. Deep learning family 

 

II.2.1.    When to apply deep learning? 

      Machine intelligence is useful in many situations which is equal or better than human 

experts in some cases, meaning that DL can be a solution to the following problems: 

• Cases where human experts are not available. 

• Cases where humans are unable to explain decisions made using their expertise (language 

understanding, medical decisions, and audio recognition). 

• Cases where the problem solution updates over time (price prediction, stock preference, 

weather prediction, and tracking). 

• Cases where solutions require adaptation based on specific cases (personalization, 

biometrics).  

• Cases where size of the problem is extremely large and exceeds our inadequate reasoning 

abilities (sentiment analysis, matching ads to Facebook, calculation webpage ranks). 

 

II.2.2.    Why deep learning? 

   Several performance features may answer this question, e.g. 

• Universal Learning Approach: Because DL has the ability to perform in 

approximately all application domains, it is sometimes referred to as universal 

learning.  
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• Robustness: In general, precisely designed features are not required in DL techniques. 

Instead, the optimized features are learned in an automated fashion related to the task 

under consideration. Thus, robustness to the usual changes of the input data is 

attained. 
• Generalization: Different data types or different applications can use the same DL 

technique, an approach frequently referred to as transfer learning (TL) which 

explained in the latter section. Furthermore, it is a useful approach in problems where 

data is insufficient. 

• Scalability: DL is highly scalable. ResNet [25], which was invented by Microsoft, 

comprises 1202 layers and is frequently applied at a supercomputing scale. Lawrence 

Livermore National Laboratory (LLNL), a large enterprise working on evolving 

frameworks for networks, adopted a similar approach, where thousands of nodes can 

be implemented. 

 

II.2.3.     Classification of DL approaches  

      DL techniques are classified into three major categories: unsupervised, partially 

supervised (semi-supervised) and supervised. Furthermore, deep reinforcement learning 

(DRL), also known as RL, is another type of learning technique, which is mostly considered 

to fall into the category of partially supervised (and occasionally unsupervised) learning 

techniques.		

A. Deep supervised learning 

      This technique deals with labeled data. When considering such a technique, the environs 

have a collection of inputs and resultant outputs	 "#, %# ∼ ' . For instance, the smart agent 

guesses  %# = )("#) if the input is  "# and will obtain ,(%#, %#) as a loss value. Next, the 

network parameters are repeatedly updated by the agent to obtain an improved estimate for 

the preferred outputs. Following a positive training outcome, the agent acquires the ability to 

obtain the right solutions to the queries from the environs.  

      For DL, there are several supervised learning techniques, such as recurrent neural 

networks (RNNs), convolutional neural networks (CNNs), and deep neural networks (DNNs). 

In addition, the RNN category includes gated recurrent units (GRUs) and long short-term 

memory (LSTM) approaches.  
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      The main advantage of this technique is the ability to collect data or generate a data output 

from the prior knowledge. However, the disadvantage of this technique is that decision 

boundary might be overstrained when training set doesn’t own samples that should be in a 

class. Overall, this technique is simpler than other techniques in the way of learning with high 

performance. 

B. Deep semi-supervised learning  

      In this technique, the learning process is based on semi-labeled datasets. Occasionally, 

generative adversarial networks (GANs) and DRL are employed in the same way as this 

technique. In addition, RNNs, which include GRUs and LSTMs, are also employed for 

partially supervised learning. One of the advantages of this technique is to minimize the 

amount of labeled data needed. On other the hand, one of the disadvantages of this technique 

is irrelevant input feature present training data could furnish incorrect decisions. Text 

document classifier is one of the most popular examples of an application of semi-supervised 

learning. Due to difficulty of obtaining a large amount of labeled text documents, semi-

supervised learning is ideal for text document classification task. 

C. Deep unsupervised learning  

      This technique makes it possible to implement the learning process in the absence of 

available labeled data (i.e. no labels are required). Here, the agent learns the significant 

features or interior representation required to discover the unidentified structure or 

relationships in the input data. The main disadvantages of unsupervised learning are unable to 

provide accurate information concerning data sorting and computationally complex. One of 

the most popular unsupervised learning approaches is clustering [26]. 
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II.2.4.     Types of DL networks 

The most famous types of deep learning networks are discussed in this section: these include 

recursive neural networks (RvNNs), RNNs, and CNNs. RvNNs and RNNs were briefly 

explained in this section while CNNs were explained in deep due to the importance of this 

type in our work. Furthermore, it is the most used in several applications among other 

networks. ��

A. Recursive neural networks 

RvNN can achieve predictions in a hierarchical structure also classify the outputs utilizing 

compositional vectors [27]. Recursive auto-associative memory (RAAM) is the primary 

inspiration for the RvNN development. The RvNN architecture is generated for processing 

objects, which have randomly shaped structures like graphs or trees. This approach generates 

a fixed-width distributed representation from a variable-size recursive-data structure.  

B. Recurrent neural networks 

RNNs are a commonly employed and familiar algorithm in the discipline of DL. RNN is 

mainly applied in the area of audio processing and NLP contexts [28].  

Unlike conventional networks, RNN uses sequential data in the network. Since the embedded 

structure in the sequence of the data delivers valuable information, this feature is fundamental 

to a range of different applications. For instance, it is important to understand the context of 

the sentence in order to determine the meaning of a specific word in it. Thus, it is possible to 

consider the RNN as a unit of short-term memory, a typical unfolded RNN diagram is 

illustrated in Figure II.2.  

Pascanu et al. [29] introduced three different types of deep RNN techniques, namely “Hidden-

to-Hidden”, “Hidden-to-Output”, and “Input-to-Hidden”. A deep RNN is introduced that 

lessens the learning difficulty in the deep network and brings the benefits of a deeper RNN 

based on these three techniques. 
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Figure II.2. Typical unfolded RNN diagram 

 

However, RNN’s sensitivity to the exploding gradient and vanishing problems represent one 

of the main issues with this approach. More specifically, during the training process, the 

reduplications of several large or small derivatives may cause the gradients to exponentially 

explode or decay. With the entrance of new inputs, the network stops thinking about the 

initial ones; therefore, this sensitivity decays over time. Furthermore, this issue can be 

handled using LSTM [30]. 

C. Long short term memory networks 

Long-Short Time Memory networks are special kind of RNN, networks with loops in them, 

allowing information to persist. LSTMs are capable of learning long-term dependencies 

between input samples. Furthermore, they are great remembering information for long time 

periods. 

LSTMs have a chain like structure with a repeating module. In one of the most common 

implementations, each module is composed by a cell, an input gate, an output gate and a 

forget gate. The cell remembers values over arbitrary time intervals and the three gates 

regulate the flow of information into and out of the cell [30]. 
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Figure II.3. LSTM implementation 

CNN is considered to be more powerful than RNN and LSTM. RNN includes less feature 

compatibility when compared to CNN. 

 

II.3.    Convolutional neural networks 
      In the field of DL, the CNN is the most famous and commonly employed algorithm [31]. 

The main benefit of CNN compared to its predecessors is that it automatically identifies the 

relevant features without any human supervision. CNNs have been extensively applied in a 

range of different fields, including computer vision, speech processing, Face Recognition, etc. 

The structure of CNNs was inspired by neurons in human and animal brains, similar to a 

conventional neural network. More specifically, in a cat’s brain, a complex sequence of cells 

forms the visual cortex; this sequence is simulated by the CNN [32].  

     Goodfellow et al. [33] identified three key benefits of the CNN: equivalent representations, 

sparse interactions, and parameter sharing. Unlike conventional fully connected (FC) 

networks, shared weights and local connections in the CNN are employed to make full use of 

2D input-data structures like image signals or mixture of 1D input-data.  

      This operation utilizes an extremely small number of parameters, which both simplifies 

the training process and speeds up the network. This is the same as in the visual cortex cells. 

Notably, only small regions of a scene are sensed by these cells rather than the whole scene 

(i.e., these cells spatially extract the local correlation available in the input, like local filters 

over the input). 
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A commonly used type of CNN, which is similar to the multi-layer perceptron (MLP), 

consists of numerous convolution layers preceding sub-sampling (pooling) layers, while the 

ending layers are FC layers. An example of CNN architecture for image classification is 

illustrated in figure II.4. 

 

Figure II.4. An example of CNN architecture for image classification  

 

II.3.1.    Benefits of employing CNNs 

      The benefits of using CNNs over other traditional neural networks in the computer vision 

environment are listed as follows: 

1) The main reason to consider CNN is the weight sharing feature, which reduces the 

number of trainable network parameters and in turn helps the network to enhance 

generalization and to avoid overfitting. 

2) Concurrently learning the feature extraction layers and the classification layer causes 

the model output to be both highly organized and highly reliant on the extracted 

features. 

3) Large-scale network implementation is much easier with CNN than with other neural 

networks.  
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II.3.2.    CNN layers  

The CNN architecture consists of a number of layers (or so-called multi-building blocks). 

Each layer in the CNN architecture, including its function, is described in detail below.	

1. Convolutional Layer: In CNN architecture, the most significant component is the 

convolutional layer. It consists of a collection of convolutional filters (so-called kernels). 

In our case, the input mixture of bird sounds, expressed as N-dimensional metrics, is 

convolved with these filters to generate the output feature map. 

• Kernel definition: A grid of discrete numbers or values describes the kernel. Each 

value is called the kernel weight. Random numbers are assigned to act as the weights 

of the kernel at the beginning of the CNN training process. In addition, there are 

several different methods used to initialize the weights. Next, these weights are 

adjusted at each training era; thus, the kernel learns to extract significant features. 

• Convolutional Operation: Initially, the CNN input format is described. The vector 

format is the input of the traditional neural network, while the image is the input of 

the CNN. To understand the convolutional operation, let us take an example of a 4 × 

4 gray-scale image with a 2 × 2 random weight-initialized kernel. First, the kernel 

slides over the whole image horizontally and vertically. In addition, the dot product 

between the input image and the kernel is determined, where their corresponding 

values are multiplied and then summed up to create a single scalar value, calculated 

concurrently. The whole process is then repeated until no further sliding is possible. 

Note that the calculated dot product values represent the feature map of the output. 

Figure 8 graphically illustrates the primary calculations executed at each step. In this 

figure, the light green color represents the 2 × 2 kernel, while the light blue color 

represents the similar size area of the input image. Both are multiplied; the end result 

after summing up the resulting product values (marked in a light orange color) 

represents an entry value to the output feature map. 

• However, padding to the input image is not applied in the previous example, while a 

stride of one (denoted for the selected step-size over all vertical or horizontal 

locations) is applied to the kernel. Note that it is also possible to use another stride 

value. In addition, a feature map of lower dimensions is obtained as a result of 

increasing the stride value. 

• On the other hand, padding is highly significant to determining border size 
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information related to the input mixture sounds. By contrast, the border side-features 

moves carried away very fast. By applying padding, the size of the input will 

increase, and in turn, the size of the output feature map will also increase. Core 

Benefits of Convolutional Layers. 

• Sparse Connectivity: Each neuron of a layer in FC neural networks links with all 

neurons in the following layer. By contrast, in CNNs, only a few weights are 

available between two adjacent layers. Thus, the number of required weights or 

connections is small, while the memory required to store these weights is also small; 

hence, this approach is memory-effective. In addition, matrix operation is 

computationally costlier than the dot operation ⨀ in CNN. 

 

 

 

 

 

 

 

 

 

 

 

Figure II.5. Primary calculations executed at each step of convolutional layer 
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• Weight Sharing: There are no allocated weights between any two neurons of 

neighboring layers in CNN, as the whole weights operate with one and all pixels of 

the input matrix. Learning a single group of weights for the whole input will 

significantly decrease the required training time and various costs, as it is not 

necessary to learn additional weights for each neuron. 

 

2. Pooling Layer: The main task of the pooling layer is the sub-sampling of the feature 

maps. These maps are generated by following the convolutional operations. In other 

words, this approach shrinks large-size feature maps to create smaller feature maps. 

Concurrently, it maintains the majority of the dominant information (or features) in every 

step of the pooling stage. In a similar manner to the convolutional operation, both the 

stride and the kernel are initially size-assigned before the pooling operation is executed. 

Several types of pooling methods are available for utilization in various pooling layers. 

These methods include tree pooling, gated pooling, average pooling, min pooling, max 

pooling, global average pooling (GAP), and global max pooling. The most familiar and 

frequently utilized pooling methods are the max, min, and GAP pooling. Sometimes, the 

overall CNN performance is decreased as a result; this represents the main shortfall of the 

pooling layer, as this layer helps the CNN to determine whether or not a certain feature is 

available in the particular input, but focuses exclusively on ascertaining the correct 

location of that feature. Thus, the CNN model misses the relevant information 

 

3. Activation Function (non-linearity): Mapping the input to the output is the core 

function of all types of activation function in all types of neural network. The input value 

is determined by computing the weighted summation of the neuron input along with its 

bias (if present). This means that the activation function makes the decision as to whether 

or not to fire a neuron with reference to a particular input by creating the corresponding 

output. Non-linear activation layers are employed after all layers with weights (so-called 

learnable layers, such as FC layers and convolutional layers) in CNN architecture. This 

non-linear performance of the activation layers means that the mapping of input to output 

will be non-linear; moreover, these layers give the CNN the ability to learn extra-

complicated things. The activation function must also have the ability to differentiate, 

which is an extremely significant feature, as it allows error back-propagation to be used 

to train the network. The following types of activation functions are most commonly used 

in CNN and other deep neural networks. 
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• Sigmoid: The input of this activation function is real numbers, while the output is 

restricted to between zero and one. The sigmoid function curve is S-shaped and can be 

represented mathematically by Eq. (II.1). 

)	(")./01 	= 	
1

1 + 456
	 (II.1) 

 

• Tanh: It is similar to the sigmoid function, as its input is real numbers, but the output 

is restricted to between −1 and 1. Its mathematical representation is in Eq. (II.2). 

)	(")#789 = 	
46 − 456	
46 + 	456

 (II.2) 

 

• ReLU: The mostly commonly used function in the CNN context. It converts the 

whole values of the input to positive numbers. Lower computational load is the main 

benefit of ReLU over the others. Its mathematical representation is in Eq. (II.3). 

)	(");<=> = 	?@"(0, ") (II.3) 

 

Occasionally, a few significant issues may occur during the use of ReLU. For 

instance, consider an error back-propagation algorithm with a larger gradient flowing 

through it. Passing this gradient within the ReLU function will update the weights in a 

way that makes the neuron certainly not activated once more. This issue is referred to 

as “Dying ReLU”. Some ReLU alternatives exist to solve such issues. The following 

discusses some of them. 

• Leaky ReLU: Instead of ReLU down-scaling the negative inputs, this activation 

function ensures these inputs are never ignored. It is employed to solve the Dying 

ReLU problem. Leaky ReLU can be represented mathematically as in Eq. (II.4). 

)(")=<BC;<=> =
", D)	"	 > 0
?",			" ≤ 0

 (II.4) 

Note that the leak factor is denoted by m. It is commonly set to a very small value, such as 

0.001. 
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• Noisy ReLU: This function employs a Gaussian distribution to make ReLU noisy. It 

can be represented mathematically as in Eq. (II.5). 

)(")GH/.C;<=> = 	?@"("	 + 	I	), JDKℎ	I	 ∼ 	M(0, N(")) (II.5) 

 

• Parametric Linear Units: This is mostly the same as Leaky ReLU. The main 

difference is that the leak factor in this function is updated through the model training 

process. The parametric linear unit can be represented mathematically as in Eq. (II.6). 

)	(")OPQPRSTQUVWUXSPQ 	= 	
"	, D)	" > 0

@"	, D)	" ≤ 0 (II.6) 

 

Note that the learnable weight is denoted as a 

4. Fully Connected Layer: Commonly, this layer is located at the end of each CNN 

architecture. Inside this layer, each neuron is connected to all neurons of the previous 

layer, the so-called FC approach. It is utilized as the CNN classifier. It follows the 

basic method of the conventional multiple-layer perceptron neural network, as it is a 

type of feed-forward ANN. The input of the FC layer comes from the last pooling or 

convolutional layer. This input is in the form of a vector, which is created from the 

feature maps after flattening.  

 

5. Loss Functions: The previous section has presented various layer-types of CNN 

architecture. In addition, the final classification is achieved from the output layer, 

which represents the last layer of the CNN architecture. Some loss functions are 

utilized in the output layer to calculate the predicted error created across the training 

samples in the CNN model. This error reveals the difference between the actual output 

and the predicted one. Next, it will be optimized through the CNN learning process. 

However, two parameters are used by the loss function to calculate the error. The 

CNN estimated output (referred to as the prediction) is the first parameter. The actual 

output (referred to as the label) is the second parameter.  
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II.4. 1D Convolutional neural networks 

     The conventional deep CNNs presented in the previous section are designed to operate 

exclusively on 2D data such as images and videos. This is why they are often referred to as, 

‘‘2D CNNs”. As an alternative, a modified version of 2D CNNs called 1D Convolutional 

Neural Networks (1D CNNs) have recently been developed [74]. These studies have shown 

that for certain applications 1D CNNs are advantageous and thus preferable to their 2D 

counterparts in dealing with 1D signals due to the following reasons: 

• There is a significant difference in terms of computational complexities of 1D and 2D 

convolutions, i.e., an image with M"M dimensions convolve with Y"Y kernel will 

have a computational complexity ~[(M\Y\) while in the corresponding 1D 

convolution (with the same dimensions, N and K) this is ~	[(MY).. This means that 

under equivalent conditions (same configuration, network and hyper parameters) the 

computational complexity of a 1D CNN is significantly lower than the 2D CNN. 

• As a general observation especially over the recent studies most of the 1D CNN 

applications have used compact (with 1–2 hidden CNN layers) configurations with 

networks having<10 K parameters whereas almost all 2D CNN applications have used 

‘‘deep” architectures with more than 1 M (usually above 10 M) parameters. 

Obviously, networks with shallow architectures are much easier to train and 

implement. 

• Usually, training deep 2D CNNs requires special hardware setup (e.g. Cloud 

computing or GPU farms). On the other hand, any CPU implementation over a 

standard computer is feasible and relatively fast for training compact 1D CNNs with 

few hidden layers (e.g. 2 or less) and neurons (e.g. < 50). 

• Due to their low computational requirements, compact 1D CNNs are well-suited for 

real-time and low-cost applications especially on mobile or hand-held devices [34]. 

 

II.5. Conclusion 

In this chapter, we presented some generalities about machine learning, then we introduced 

the notion of deep learning (DL). We investigated classification of DL approaches and 

different types of DL networks. We then looked in detail at the 2D convolutional neural 

network and finally the 1D CNN network that we will need for the rest of our work. 

  

 



 

 

 

 

 
 
 
 
CHAPTER III   

Conv-TasNet for bird sound separation 
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III.1. Introduction 

     Fully-connected DNNs are an early and commonly used type of neural networks applied to 

audio source separation. However, many works show that these networks may be limited, 

especially when the recordings contain some levels of reverberation.  

     Conv-TasNet is a recently proposed fully-convolutional time-domain audio separation 

network based deep neural network that achieves state-of-the-art performance in audio source 

source separation. Its architecture consists of a learnable encoder/decoder and a separator that 

operates on top of this learned space. Various improvements have been proposed to Conv-

TasNet. However, they mostly focus on the separator, leaving its encoder/decoder as a 

(shallow) linear operator. 

     The fully-convolutional time-domain audio separation network (Conv-TasNet), a deep 

learning framework for end-to-end time-domain audio source separation. Conv-TasNet uses a 

linear encoder to generate a representation of the audio source waveform optimized for 

separating individual sounds. 

III.2. Convolutional Time-Domain Audio Separation Network 

The fully-convolutional time-domain audio separation net- work (Conv-TasNet) consists of 

three (03) processing stages, as shown in figure III.1: encoder, separation, and decoder.  

First, an encoder module is used to transform short segments of the mixture waveform into 

their corresponding representations in an intermediate feature space. This representation is 

then used to estimate a multiplicative function (mask) for each source at each time step. The 

source waveforms are then reconstructed by transforming the masked encoder features using a 

decoder module. We describe the details of each stage in this section. 

 

 

Figure III.1. The block diagram of the TasNet system 
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III.2.1. Time-domain audio source separation  

     The problem of single-channel audio source separation can be formulated in terms of 

estimating C sources !" # , …	, !' # 	 ∈ 	ℝ"×+, given the discrete waveform of the mixture 

, # 	∈ 	ℝ"×+, where  

 , # = !.(#)
1
.2"  (III.1) 

In time-domain audio separation, we aim to directly estimate !. # , 3 = 1,… , 5,	from ,(#). 

 

III.2.2. Convolutional encoder-decoder  

     The input mixture sound can be divided into overlapping segments of length L, 

represented by ,6 ∈ ℝ"×7, where 8 = 1, . . . , : denotes the segment index and : denotes the 

total number of segments in the input. ,6 is transformed into a N-dimensional representation, 

; ∈ ℝ"×<	by a 1-D convolution operation, which is reformulated as a matrix multiplication 

(the index k is dropped from now on): 

 ; = 	ℋ(,>) (III.2) 

     Where > ∈ ℝ<×7 contains N vectors (encoder basis functions) with length L each, and 

ℋ ⋅  is an optional nonlinear function. In [21],  ℋ ⋅  was the rectified linear unit (ReLU) to 

ensure that the representation is non-negative. The decoder reconstructs the waveform from 

this representation  

Using a 1-D transposed convolution operation, which can be reformulated as another matrix 

multiplication: 

 , = ;@ (III.3) 

     Where , ∈ ℝ"×7 is the reconstruction of x, and the rows in @ ∈ ℝ<×7 are the decoder basis 

functions, each with length L. The overlapping reconstructed segments are summed together 

to generate the final waveforms. 
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      Although we reformulate the encoder/decoder operations as matrix multiplication, the 

term “convolutional auto-encoder” is used because in actual model implementation, 

convolutional and transposed convolutional layers can more easily handle the overlap 

between segments and thus enable faster training and better convergence.  

III.2.3. Estimating the separation masks 

The separation for each frame is performed by estimating 5 vectors (masks) A. ∈ ℝ"×<, 3 =

1,… , 5 where 5 is the number of speakers in the mixture that is multiplied by the encoder 

output w. The mask vectors A. have the constraint that A. ∈ [0,1] . The representation of 

each source, E. ∈ 	ℝ"×<, is then calculated by applying the corresponding mask, A. to the 

mixture representation w: 

 E. = ;	 ⊙ A. (III.4) 

Where ⊙ denotes element-wise multiplication. The waveform of each source !.	, 3 = 1,… , 5 

is then reconstructed by the decoder: 

 !. = E.@ (III.5) 

 

The unit summation constraint in [21], A.
1
.2" = 1 , was applied based on the assumption 

that the encoder-encoder architecture can perfectly reconstruct the input mixture. In next 

chapter, we will examine the consequence of relaxing this unity summation constraint on 

separation accuracy. 

III.2.4. Convolutional separation module  

     Motivated by the temporal convolutional network [35], we propose a fully-convolutional 

separation module that consists of stacked 1-D dilated convolutional blocks, as shown in 

figure III.2. Temporal convolutional network (TCN) was proposed as a replacement for RNNs 

in various sequence modeling tasks. Each layer in a TCN consists of 1-D convolutional 

blocks with increasing dilation factors. The dilation factors increase exponentially to ensure a 

sufficiently large temporal context window to take advantage of the long-range dependencies 

of the audio source signal, as denoted with different colors in figure III.2. In Conv-TasNet, M 

convolutional blocks with dilation factors 1,2,4, … , 2IJ" are repeated R times. The input to 
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each block is zero padded accordingly to ensure the output length is the same as the input. 

The output of the TCN is passed to a convolutional block with kernel size block 1(1×1 −

LMNO block, also known as pointwise convolution) for mask estimation. The 1×1 − LMNO 

block together with a nonlinear activation function estimates 5 mask vectors for the 5 target 

sources. 

 

 
Figure III.2. A flowchart of the proposed system 

 

 

     Figure III.3 shows the design of each 1-D convolutional block. The design of the 1-D 

convolutional blocks follows [36], where a residual path and a skip-connection path are 

applied: the residual path of a block serves as the input to the next block, and the skip-

connection paths for all blocks are summed up and used as the output of the TCN. To further 

decrease the number of parameters, depthwise separable convolution (P − LMNO ⋅ ) is used to 

replace standard convolution in each convolutional block.  
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Figure III.3. The design of 1-D convolutional block 

 

     Depthwise separable convolution (also referred to as separable convolution) has proven 

effective in image processing tasks [37] and neural machine translation tasks [38]. The 

depthwise separable convolution operator decouples the standard convolution operation into 

two consecutive operations, a depthwise convolution (Q − LMNO ⋅ ) followed by pointwise 

convolution (1×1 − LMNO ⋅ ): 

 

Q − LMNO R,S = LMNLT# UV ⊛ XV ,					Y = 1, … , Z (III.6) 

P − LMNO R,S, [ = Q − LMNO R,S ⊛ [ (III.7) 

 

Where R ∈ ℝ\×I is the input to P − LMNO ⋅ , S ∈ ℝ\×] is the convolution kernel with size 

P, UV ∈ ℝ"×I and XV ∈ ℝ"×] are the rows of matrices Y and K , respectively, [ ∈ ℝ\×^×" is 

the convolution kernel with size 1, and ⊛ denotes the convolution operation. In other words, 

the Q − LMNO ⋅  operation convolves each row of the input Y with the corresponding row of 

matrix K, and the 1×1 − LMNO	block linearly transforms the feature space. In comparison 

with the standard convolution with kernel size _ ∈ ℝ\×^×] depthwise separable convolution 
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only contains `×a + `×c parameters, which decreases the model size by a factor of ^×]
^d]

≈

a when c ≫ a. 

A nonlinear activation function and a normalization operation are added after both the first 

1×1 − LMNO and Q − LMNO blocks respectively. The nonlinear activation function is the 

parametric rectified linear unit (PReLU) [39]:  

 

aghi> , =
,,												3j	, ≥ 0
l,, M#ℎhn;3!h	

 (III.8) 

 
Where l ∈ ℝ is a trainable scalar controlling the negative slope of the rectifier. The choice of 

the normalization method in the network depends on the causality requirement. For noncausal 

configuration, we found empirically that global layer normalization (gLN) outperforms all 

other normalization methods. In gLN, the feature is normalized over both the channel and the 

time dimensions:  

 

oiZ p =
q − r p

@Tn p + s
⊙ 	t + u (III.9) 

r p =
1

Z:
p

<+

 (III.10) 

@Tn p =
1

Z:
	 q − r p v

<+

 (III.11) 

 
Where p ∈ ℝ<×+ is the feature, t, u ∈ ℝ<×" are trainable parameters, and s is a small 

constant for numerical stability. This is identical to the standard layer normalization applied in 

computer vision models where the channel and time dimension correspond to the width and 

height dimension in an image [40]. In causal configuration, gLN cannot be applied since it 

relies on the future values of the signal at any time step. Instead, we designed a cumulative 

layer normalization (cLN) operation to perform step-wise normalization in the causal system: 
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LiZ w6 =
w6 − r wxy6

@Tn wxy6 + s
⊙ 	t + u (III.12) 

r wxy6 =
1

Z8
wxy6

<6

 (III.13) 

@Tn wxy6 =
1

Z8
wxy6 − r wxy6

v

<6

 (III.14) 

 

Where w6 ∈ ℝ<×" is the k-th frame of the entire feature F, wxy6 ∈ ℝ<×6 corresponds to the 

feature of k frames w", … , w6  and t, u ∈ ℝ<×" are trainable parameters applied to all frames. 

To ensure that the separation module is invariant to the scaling of the input, the selected 

normalization method is applied to the encoder output w before it is passed to the separation 

module. 

     At the beginning of the separation module, a linear 1×1 − LMNO block is added as a 

bottleneck layer. This block determines the number of channels in the input and residual path 

of the subsequent convolutional blocks. For instance, if the linear bottleneck layer has B 

channels, then for a 1-D convolutional block with H channels and kernel size P, the size of the 

kernel in the first 1×1 − LMNO block and the first Q − LMNO block should be z ∈ ℝ{×^×" and 

S ∈ ℝ^×] respectively, and the size of the kernel in the residual paths should be [|} ∈

ℝ^×{×". The number of output channels in the skip-connection path can be different than B, 

and we denote the size of kernels in that path as [~� ∈ ℝ
^×~�×" . 

 

III.3. Conclusion 

     In this chapter, we introduced the Conv-TasNet audio source separation system. We have 

presented in detail the different Conv-Tasnet component blocks namely the encoder/decoder 

and the separation module based on the CNN 1D convolutional neural network. 

     In the next chapter, we will implement this system and apply it on a database of popular 

speech mixtures, then we will apply it on our own database of bird sounds. 



 

 

 

 

 

CHAPTER IV 

Experiment and results 
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IV.1. Introduction 

     In this last chapter, we will present the implementation of Conv-TasNet on our dataset of 

birds that we composed from xeno-canto.org. We will train our system and test it using a 

python code. Next, we will discuss the results achieved and the performance of our bird sound 

separation system. 

IV.2. Programming Languages 

     The programing and development of the project has been made using Python and run the 

code using Shell.  

 

                               Python 87.5 %                       Shell 12.5 %                             

 

IV.2.1. Presentation of programming languages: 

A. What is Shell language? 

     At its base, a shell is simply a macro processor that executes commands. The term macro 

processor means functionality where text and symbols are expanded to create larger 

expressions. 

     A Unix shell is both a command interpreter and a programming language. As a command 

interpreter, the shell provides the user interface to the rich set of GNU utilities. The 

programming language features allow these utilities to be combined. Files containing 

commands can be created, and become commands themselves. These new commands have 

the same status as system commands in directories such as /bin, allowing users or groups to 

establish custom environments to automate their common tasks. 

     Shells provide a small set of built-in commands (builtins) implementing functionality 

impossible or inconvenient to obtain via separate utilities. like, cd, bash 1, pwd. 

Shell language is available on Linux and Mac OS and don’t exist on Windows. 

 

																																																													
1 Bash is a command language interpreter, for the GNU operating system. 
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B. What is Python?  

     Python is an interpreted, object-oriented, high-level programming language with dynamic 

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic 

binding, make it very attractive for Rapid Application Development, as well as for use as a 

scripting or glue language to connect existing components together. Python's simple, easy to 

learn syntax emphasizes readability and therefore reduces the cost of program maintenance. 

Python supports modules and packages, which encourages program modularity and code 

reuse. The Python interpreter and the extensive standard library are available in source or 

binary form without charge for all major platforms, and can be freely distributed. 

     Often, programmers fall in love with Python because of the increased productivity it 

provides. Since there is no compilation step, the edit-test-debug cycle is incredibly fast. 

Debugging Python programs is easy a bug or bad input will never cause a segmentation fault. 

Instead, when the interpreter discovers an error, it raises an exception. When the program 

doesn't catch the exception, the interpreter prints a stack trace. A source level debugger allows 

inspection of local and global variables, evaluation of arbitrary expressions, setting 

breakpoints, stepping through the code a line at a time, and so on. The debugger is written in 

Python itself, testifying to Python's introspective power. On the other hand, often the quickest 

way to debug a program is to add a few print statements to the source the fast edit-test-debug 

cycle makes this simple approach very effective. 

     DL has become one of fastest-moving areas of IT and one of Python’s star use cases. The 

vast majority of the libraries used for DL have Python interfaces, making the language the 

most popular high-level command interface to for DL libraries and other numerical 

algorithms. 

C. Installation of Python 

       As we know python have two different versions (python 2 and python 3) .In this section 

we will explain briefly how to download and install python3 for windows. 

     To install Python for Microsoft Windows (7, 8,10) download latest version of python from 

here : http://www.python.org/downloads/windows 

 

If your browser asks whether to save or keep your file, choose to save it. 
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      Once you’ve downloaded the Python for Windows installation file you should be 

prompted to run it. If not, open your Downloads folder and double-click the file. Now, follow 

the installation instructions: 

• Select Add python to path and then click Install Now. 

• For the optional Features you should select pip2. 

• When asked whether to allow the program to make changes to your computer, choose 

Next 

• Click Close once installation finishes, and you should see a Python 3 entry in your 

Windows Start menu. 

 

 

Figure IV.1. Python installation 

 

      When installing Python, you’ll also install the IDLE program, which is the Integrated 

DeveLopment Environment that lets you write programs for Python. 

       See the annex, there is a detailed explanation of how to install python for Mac OS, You 

can also install Anaconda, It contains python and DL Tools. See installation steps from here: 

https://docs.anaconda.com/anaconda/install/ 

 

 

 

 
																																																													
2	Pip	is	the	package	installer	for	Python.	Which	can	download	and	install	other	python	packages.	
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D. Used packages 

The following packages were used in our work:  

• PyTorch:    module is a Python based framework for programming neural networks, 

that contains implementation of linear, LSTM, BLSTM, convolutional layers, 

backpropagation algorithms and loss functions. 

• CUDA:    NVIDIA’s CUDA Python provides a driver and runtime API for existing 

toolkits and libraries to simplify GPU-based accelerated processing. 

• Asteroid:    PyTorch-based audio source separation toolkit for researchers. 

• Soundfile:     package is used for loading mixtures from sound files in dataset folders 

and for writing outputs of testing. 

• Numpy:     package is used for math. 

• Pandas:    a Python package that provides fast, flexible, and expressive data structures 

designed to make working with structured and time series data both easy and intuitive. 

• Torch:    A Tensors and Dynamic neural networks in Python with strong GPU 

acceleration. 

• CUDA:    NVIDIA’s CUDA Python provides a driver and runtime API for existing 

toolkits and libraries to simplify GPU-based accelerated processing. 

• Data loader :    This module provides loading files from the dataset which is stored in 

the folder structure 

IV.2.2. PRESENTATION OF ASTEROID: 

     Asteroid is a Pytorch-based audio source separation toolkit that enables fast 

experimentation on common datasets. It comes with a source code that supports a large range 

of datasets and architectures, and a set of recipes to reproduce some important papers. 

Asteroid has several target usage: 

• Use asteroid in your own code, as a package.  

• Use available recipes to build your own separation model.  

• Use pretrained models to process your files.  

• Hit the ground running with your research ideas 
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A. Installation	

Asteroid is on	the	python	package	index	(PyPI), you can install the latest release with the 

instruction:  

o pip install asteroid 

To run Asteroid on GPU, you will need a CUDA-enabled PyTorch installation. 

B. Functionality 

Asteroid follows the encoder-masker-decoder approach, and provides various choices of 

filterbanks, masker networks, and loss functions. It also provides training and evaluation tools 

and recipes for several datasets. 

C. Supported Datasets 

The following is a list of supported datasets, sorted by task. As you can use asteroid on your 

own dataset and for your own task. 

o Speech separation  

• WSJ0-Mix dataset  

• WHAM dataset 

• WHAMR dataset 

• Kinect-WSJ dataset 

• LibriMix dataset  

• SMS_WSJ dataset 

o Speech enhancement 

• DNS Challenge’s dataset 

o Music source separation 

• MUSDB18 Dataset 

• DAMP-VSEP dataset 

o Audio-visual source separation 

• AVSpeech dataset 

o Environmental sound separation 

• FUSS dataset 
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IV.2.3. Implementation    

   The experiments were performed on a MacBook Pro a computer with i7 core 8G RAM and 

256G ROM , the reason for that is that windows can't run shell scripts and also the experiment 

is a deep learning project to realize it we will need a computer with high hardware 

configuration. 

 

Figure IV.2. The characteristics of the machine used 

 

     Our system is implemented in Python using all libraries mentioned in used package. All 

audios are resampled to 16kHz.all others parameters were mentioned in next sections. 

 

 

 

 

 

 

Figure IV.3. Typical directory of a recipe 
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Implementation has 4 stages as follows: 

• Stage 1: Generate mixture. 

• Stage 2: Gather data information into text files. 

• Stage 3: Train the source separation system. 

• Stage 4: Separate test mixtures and evaluate. 

     First, we create our dataset. Then, we use the mixture script to generate the data. All the 

information required by the dataset’s DataLoader such as file names and paths, sounds 

lengths is then gathered into text files under data/. The training stage is finally followed by 

the evaluation stage. 

     The model class, which is a direct subclass of PyTorch’s nn.Module, is defined in 

model.py. It is imported in both training and evaluation scripts.  Instead of defining 

constants in model.py and train.py, most of them are gathered in a YAML configuration 

file conf.yml. An argument parser is created from this configuration file to allow 

modification of these values from the command line, with run.sh passing arguments to 

train.py. The resulting modified configuration is saved in exp/ to enable future reuse. 

Other arguments such as the experiment name, the number of GPUs, etc., are directly passed 

to run.sh. 

Full python code is written in the annex. 

Model architecture: 

     The encoder consists of just one convolution and the decoder, symmetrically, of a 

transposed convolution. The separation module is a temporal convolutional network, 

composed of stacks of convolutional blocks with exponentially increasing dilation factors, 

which have both skip connections and residual connections, and ending with a 1x1 

convolution followed by a sigmoid that produces the masks for each of the sources. A 

convolutional block uses 1x1 convolutions and a depthwise convolution, to reduce the number 

of parameters, as well as group layer normalization and PReLU activations. The model is 

trained using SI-SDR as the cost function.  
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IV.3. Experiment: 

Dataset: Bird Sound Dataset (BSD)   

     We decided to gather our data from xeno-canto.org, which is a popular open source bird 

recording website, with over 500,000 recordings. We liked this source because we could 

specifically pick the birds, size, and quality of our data. 

      Through a Python wrapper from Github we downloaded our dataset from xeno-canto.org 

composed of bird sounds. We chose to build our dataset to look like the Wall Street Journal 

(WSJ0) dataset. With same characteristic exist in WSJ0. 

     We evaluated our system on two-bird and three-bird sound separation problems using the 

BSD-2mix and BSD-3mix datasets. 3 hours of training and 1 hour of validation data are 

generated from birds in datasets. The sound mixtures are generated by randomly selecting 

vocalizations from different birds in the bird sound dataset (BSD)	and mixing them at random 

signal-to-noise ratios (SNR) between -5 dB and 5 dB. 30 min evaluation set is generated in 

the same way. All the waveforms are resampled at 8 kHz.  

 

IV.3.1. Experiment configurations: 

     The networks are trained for 10 epochs on 4-second long segments. The initial learning 

rate is set to 1"#$. The learning rate is halved if the accuracy of validation set is not improved 

in 3 consecutive epochs. Adam 3[41] is used as the optimizer. A 50% stride size is used in the 

convolutional autoencoder (i.e. 50% overlap between consecutive frames). Gradient clipping 

with maximum %&-norm of 5 is applied during training. The hyperparameters of the network 

are shown in table I 

 

 

 

 

 

 

																																																													
3	Adam	optimization	is	a	stochastic	gradient	descent	method	that	is	based	on	adaptive	estimation	of	first-order	
and	second-order	moments.	
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Symbol Description 

N Number of filters in autoencoder 

L Length of the filters (in samples) 

B Number of channels in bottleneck 
and the residual paths’ 1	×	1 − *+,-	blocks 

Sc Number of channels in skip-connection 
paths’ 1	×	1 − *+,- blocks 

H Number of channels in convolutional blocks 

P Kernel size in convolutional blocks 

X Number of convolutional blocks in each repeat 

R Number of repeats 

 

Table IV.1. Hyperparameters of the network 

 

Training objective : 
     The objective of training the end-to-end system is maximizing the scale-invariant source-to 

noise ratio (SI-SNR), which has commonly been used as the evaluation metric for source 

separation replacing the standard source-to-distortion ratio. SI-SNR is defined as: 

 

	

./0123/ ∶=
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Where . ∈ 	ℝB×F and . ∈ 	ℝB×F are the estimated and original clean sources, respectively, 

and  . & = 	 ., .  denotes the signal power. Scale invariance is ensured by normalizing . and 

. to zero-mean prior to the calculation. Audio-level permutation invariant training (uPIT) is 

applied during training to address the source permutation problem. 

 

Evaluation metrics: 

 
     We report the scale-invariant signal-to-noise ratio improvement (SI-SNRi) and signal-to-

distortion ratio improvement (SDRi) as objective measures of separation accuracy. The 

reported improvements in tables indicate the additive values over the original mixture. In 

addition to the distortion metrics,  
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IV.4. Results 
     Figure IV.3 visualizes all the internal variables of Conv-TasNet for one example mixture 

sound with two overlapping birds sound (denoted by red and blue). The encoder and decoder 

basis functions are sorted by the similarity of the Euclidean distance of the basis functions 

found using the unweighted pair group method with arithmetic mean (UPGMA) method [42]. 

The basis functions show a diversity of frequency and phase tuning. The representation of the 

encoder is colored according to the power of each bird’s sound at the corresponding basis 

output at each time point, demonstrating the sparsity of the encoder representation. As can be 

seen in Figure IV.3, the estimated masks for the two sounds highly resemble their encoder 

representations, which allows for the suppression of the encoder outputs that correspond to 

the interfering sound and the extraction of the target sound in each mask. The separated 

waveforms for the two birds sound are estimated by the linear decoder, whose basis functions 

are shown in Figure IV.3. The separated waveforms are shown on the right. 

 

Figure IV.3. Sound Separation Architecture 

 

     Figure IV.3. demonstrate a visualization of the encoder and decoder basis functions, 

encoder representation, and source masks for a sample 2-birds sound mixture. The birds are 

shown in red and blue. The encoder representation is colored according to the power of each 

birds at each basis function and point in time. The basis functions are sorted according to their 

Euclidean similarity and show diversity in frequency and phase tuning 
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Non-negativity of the encoder output 

     The non-negativity of the encoder output was enforced in [21], [43] using a rectified-linear 

nonlinearity (ReLU) function. This constraint was based on the assumption that the masking 

operation on the encoder output is only meaningful when the mixture and speaker waveforms 

can be represented with a non-negative combination of the basis functions, since an 

unbounded encoder representation may result in unbounded masks. However, by removing 

the nonlinear function H, another assumption can be made: with an unbounded but highly 

overcomplete representation of the mixture, a set of non-negative masks can still be found to 

reconstruct the clean sources. In this case, the overcompleteness of the representation is 

crucial.  

If there exist only a unique weight feature for the mixture as well as for the sources, the non-

negativity of the mask cannot be guaranteed. Also note that in both assumptions, we put no 

constraint on the relationship between the encoder and decoder basis functions U and V, 

meaning that they are not forced to reconstruct the mixture signal perfectly.  

One way to explicitly ensure the autoencoder property is by choosing V to be the pseudo-

inverse of U (i.e. least square reconstruction). The choice of encoder/decoder design affects 

the mask estimation: in the case of an autoencoder, the unit summation constraint must be 

satisfied; otherwise, the unit summation constraint is not strictly required. To illustrate this 

point, we compared five different encoder-decoder configurations: 

1) Linear encoder with its pseudo-inverse (Pinv) as decoder, i.e. G = 	H IFI #BIF and 

H = GI, with Softmax function for mask estimation. 

2) Linear encoder and decoder where G = HJ and H = GI, with Softmax or Sigmoid 

function for mask estimation. 

3) Encoder with ReLU activation and linear decoder where G = >"%J	(HJ) and  H =

GI, with Softmax or Sigmoid function for mask estimation. 

Separation accuracy of different configurations in table III shows that pseudo-inverse 

autoencoder 4leads to the worst performance, indicating that an explicit autoencoder 

configuration does not necessarily improve the separation score in this framework. The 

performance of all other configurations is comparable. Because linear encoder and decoder 

																																																													
4	Autoencoders are a special class of neural networks designed to find an efficient representation of 
data by learning correlations between the data points. 
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with Sigmoid function achieves a slightly better accuracy over other methods, we used this 

configuration in all the following experiments. 

 

Encoder Mask 
Model 

Size 

SI-SNRI 

(dB) 

SDRi 

(dB) 

Pinv 
 

Softmax  12.1 
 

12.4 
 

Linear 
 

Softmax 
Sigmoid 

 
1.5M 

12.9 
13.1 

 

13.2 
13.4 

 
ReLU Softmax 

Sigmoid 
 

 13.0 
12.9 

13.3 
13.2 

 
Table IV.2. Separation score for different system configurations 

 

IV.4.1. Optimizing the network parameters: 
 

We evaluate the performance of Conv-TasNet on two bird separation tasks as a function of 

different network parameters. Table II shows the performance of the systems with different 

parameters, from which we can conclude the following statements: 

 

• Encoder/decoder: Increasing the number of basis signals in the encoder/decoder increases 

the overcompleteness of the basis signals and improves the performance. 

• Hyperparameters in the 1-D convolutional blocks: A possible configuration consists of a 

small bottleneck size B and a large number of channels in the convolutional blocks H. 

where the ratio between the convolutional block and the bottleneck M/O was found to be 

best around 5. Increasing the number of channels in the skip-connection block improves 

the performance while greatly increases the model size. Therefore, we selected a small 

skip-connection block as a trade-off between performance and model size. 

• Number of 1-D convolutional blocks: When the receptive field is the same, deeper 

networks lead to better performance, possibly due to the increased model capacity. 

• Size of receptive field: Increasing the size of receptive field leads to better performance, 

which shows the importance of modeling the temporal dependencies in the audio signal. 
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• Length of each segment: Shorter segment length consistently improves performance. Note 

that the best system uses a filter length of only 2 ms (P
QR
	= 	

BS

TCCC
= 	0: 002.),  

• Causality: Using a causal configuration leads to a significant drop in the performance. 

This drop could be due to the causal convolution and/or the layer normalization 

operations. 

 

N L B H WX P X R 
Normali- 

zation 
Causal Receptive 

field (s) 
Model 

size 

SI-
SNRi 
(dB) 

SDRi 
(dB) 

128 

256 

512 

40 

40 

40 

128 

128 

128 

256 

256 

256 

128 

128 

128 

3 

3 

3 

7 

7 

7 

2 

2 

2 

gLN 

gLN 

gLN 

× 

× 

× 

1.28 

1.28 

1.28 

1.5M 

1.5M 

1.7M 

13.0 

13.1 

13.3 

13.2 

13.3 

13.5 

512 

512 

512 

512 

512 

512 

40 

40 

40 

40 

40 

40 

 

128 

128 

128 

128 

128 

128 

 

256 

512 

512 

256 

512 

512 

256 

128 

512 

256 

256 

512 

3 

3 

3 

3 

3 

3 

7 

7 

7 

7 

7 

7 

2 

2 

2 

2 

2 

2 

gLN 

gLN 

gLN 

gLN 

gLN 

gLN 

× 

× 

× 

× 

× 

× 

1.28 

1.28 

1.28 

1.28 

1.28 

1.28 

2.4M 

3.1M 

6.2M 

3.2M 

6.0M 

6.5M 

13.0 

13.3 

13.5 

13.0 

13.4 

13.2 

13.3 

13.6 

13.8 

13.3 

13.7 

13.5 

512 

512 

512 

40 

40 

40 

128 

128 

128 

512 

512 

512 

128 

128 

128 

3 

3 

3 

6 

4 

8 

4 

6 

3 

gLN 

gLN 

gLN 

× 

× 

× 

1.27 

0.46 

3.83 

5.1M 

5.1M 

5.1M 

14.1 

13.9 

14.4 

14.4 

14.2 

14.7 

512 

512 

512 

32 

16 

16 

128 

128 

128 

512 

512 

512 

128 

128 

128 

3 

3 

3 

8 

8 

8 

3 

3 

3 

gLN 

gLN 

cLN 

× 

× 

YES 

3.06 

1.53 

1.53 

5.1M 

5.1M 

5.1M 

14.7 

15.1 

10.6 

15.0 

15.4 

11.0 

 
Table IV.3. The effect of different configurations in Conv-TasNet 

 
 

IV.4.2. Comparison of Conv-TasNet on other datasets 
     We compared the separation accuracy of Conv-TasNet method using SDRi and SI-SNRi 

on other datasets (WSJ0-2Mix, MiniLibriMix) with our dataset BSD.	Unlike our dataset, the 

two other datasets composed of utterances from different speakers (speech) 
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We list the best results that have been obtained in the experiments. Except for wsj0 dataset, 

we listed the results that have been reported in literature .The configurations of Conv-TasNet 

is the same in all experiments. Table IV.4 compares the performance of Conv-TasNet on the 

three datasets. 

 

Dataset Method SI-SNRi (dB) SDRi (dB) 

BSD  15,1 15.4 

MiniLibriMix Conv-TasNet 14.4 14.7 

WSJ0-2Mix  15.3 15.6 

 
 

Table IV.4. Comparison of Conv-TasNet on other datasets. 

 

     The table IV.4 shows that the MiniLibriMix have the worst performance because of her 

small size. For this dataset size is important to assure a better performance when we train the 

network.  As shown too that the using of WSJ0-2Mix leads to the best performance and the 

performance of our dataset is comparable. 

 

IV.5. Conclusion 
 

      In this last chapter we studied the fully-convolutional time-domain audio separation 

network (Conv-TasNet) for bird sounds separation. A deep learning audio separation system 

that directly operates on the sound. We implement the network, train and evaluate it and show 

the results. This allowed to a better understanding of the system studied (Conv-TasNet). 

Experiments results shown that the performance of separation sounds is significantly 

improved especially in noisy conditions. In addition the effectiveness of the Conv-TasNet 

system for separation bird sounds has been proven and given an acceptable results compared 

to other sounds especially with speech. 
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GENERAL CONCLUSION 

 

In order to achieve good performance in identifying bird species based on their 

sounds,	the separation of bird sounds is a very important and crucial step 

In this thesis, we have presented a robust bird sound separation system. a fully-

convolutional neural network system in time-domain named (Conv-TasNet) 

composed of three main blocks: an encoder, a separation model based on the neural 

network CNN 1D and a decoder 

This work was based on four main chapters:  

In the first chapter, we studied the audio source separation. After that, we made a state 

of the art about the related methods on audio separation found in the literature. 

In the second chapter, we first presented the deep learning with her different 

techniques, then, we studied the different types of DL networks and focused on the 

CNN.  

In the third chapter, we explained in detail each step of the proposed bird sound 

separation system the Conv-TasNet. 

In the last chapter, we implemented the Conv-TasNet system. Then, we evaluated the 

performance proposed system. after that, we presented the results obtained and 

compared it with similar works 

The results obtained demonstrated the effective of the Conv-TasNet system and works 

satisfactorily for bird sound separation.	

In conclusion, Conv-TasNet represents a significant step toward the realization of 

audio source separation algorithms and opens many future research directions that 

would further improve its accuracy, speed, and computational cost, which could 

eventually make automatic audio source separation a common and necessary feature 

of every audio processing technology designed for real-world applications. 
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APPENDIX 
 
 

A.    How to Install Python on Macintosh  
	

Python is one of the oldest programming languages around. However, with the onset 

of Machine Learning, Python has been given a new lease of life. It has become a 

popular tool for both Machine Learning and Deep Learning. 
 

Currently, Python is available as two distinct versions. That is Python 2 

and Python 3. In this tutorial, you are going to learn how install both 

versions on your system. 

 

Selecting a Version of Python 

 

With two great choices, how do you decide on which one to use? It all comes down 

to compatibility. Certain programmes or libraries that you want to use in your project 

may only be compatible with one version of Python. 
 

So keep your end goal in mind when selecting a version. If you want to have more 

flexibility when it comes to Python projects, just download both versions. 

 

Begin Installation 

 

1. Visit  https://www.python.org/ 
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2. Select the 'Downloads' tab. A drop down menu will appear. 

	

	

	

3. To the right of the drop down menu, you will see the latest versions of python 

that are available for MAC. The first button provides the latest version of 

Python 3 and the second button provides the option for the latest version of 

Python 2. Once you click an option, the download will begin. 
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4. Once installation is complete, double click the package in the download 

bar. This will start the installation process. 
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5. In the dialogue box that pops up you will be shown a welcome notice, select 

"Continue". 

6. In the new dialogue box, you will be presented with important 

information regarding the changes made to Python, once again select 

"Continue". 

7. Now you will be shown the terms and conditions for using Python. Select 

"Continue". 

8. A mini dialogue box will appear requesting you to agree to the terms and 

conditions listed. Select "Agree". 

9. Finally you will be told how much memory will be used on your system. 

Select "install" 

10. For security purposes, the system will request you to enter your user 

name and password. Enter the details, then select "Install Software" 

11. Now the dialogue box will display a progress bar to indicate how much of 

the installation is complete. This should only take a few minutes depending 

on your system's memory and speed. 

12. Once the installation is complete, you will be presented with a dialogue box 

indicating that your installation was successful. 

 

Test your Installation 

 

Now that you have downloaded Python, test it to make sure it is working correctly. 
 

• Open the Mac Terminal. 

• Type python2 (or python3, depending on the version you installed) and press 

enter. 

• The version of your Python installation should show up 
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git clone https://github.com/asteroid-
team/asteroid cd asteroid 

pip install-e. 

B. Asteroid: 
	

Installation : 

	

By following the instructions below, first install PyTorch and then Asteroid (using 

either pip/dev install). We recommend the development installation for users likely to 

modify the source code. 

CUDA and PyTorch 

Asteroid is based on PyTorch. To run Asteroid on GPU, you will need a CUDA-

enabled PyTorch installation. Visit this site for the instructions :  

Pip 

Asteroid is regularly updated on PyPI, install the latest stable version with: 

 
   

 
Development installation 
 
For development installation, you can fork/clone the GitHub repo and locally install it 
with pip: 

 

This is an editable install (-e flag), it means that source code changes (or branch 

switching) are automatically taken into account when importing asteroid. 

You can also use conda env create -f environment.yml to create a Conda env 

directly. 

 

 

pip install asteroid 
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Asteroid Recipe: 

A recipe is a set of scripts that use Asteroid to build a source separation system. our 

directory corresponds to BSD dataset and each subdirectory corresponds corresponds 

to our system build on this dataset. 

Our recipe is organized as follows: 

 

 

How our recipe work: 

As we said we created our recipe in the same way exist in asteroid. Now we explain 

how our work: 

• There is a master file, run.sh, from which all the steps are run (install 

dependencies, download data, create dataset, train a model evaluate it and so 

on...).  

- We change some variables in the top of the file (comments are around it) like 

data directory, python path etc.  

- This script is controlled by several arguments. Among them, stage controls 

from where do you start the script. For example you already generated the 

data? No need to do it again, set stage=3! 

- All steps until training are dataset-specific and the corresponding scripts are 

stored in ./local. 

 

 



	

	 55 

o The training and evaluation scripts are then called from run.sh 

 

- There is a script, model.py, where the model should be defined along with the 

System subclass used for training (if needed). 

- We wrap the model definition in one function (make_model_and_optimizer). 

The function receives a dictionary which is also saved in the experiment 

folder. This make checkpoint restoring easy without any additional 

constraints. 

- We also write a function to load the best model (load_best_model) after 

training. This is useful to load the model several time (evaluation, separation 

of new examples. . . ). 

 

• The arguments flow through bash/python/yaml in a specific way, which was 

designed by us and suits our use- cases until now: 

 

- The very first step is the local/conf.yml files where is a hierarchical 

configuration file. 

- On the python side: This file is parsed as a dictionary of dictionary in 

training.py  From this dict, we create an argument parser which can accept all 

the second-level keys from the dictionary (so second-level keys should be unique) 

as arguments and has the default values from the conf.yml file. 

- On the bash side: we also parse arguments from the command line (using 

utils/parse_options.sh). The arguments above the line. 

utils/parse_options.sh can be parsed, the rest are fixed. Most arguments 

will be passed to the training script. Others control the data preparation, GPU 

usage etc. 

- In light of all this the config file should have sensible default values that shouldn’t 

be modified by hand much. The quickly configurable part of the recipe is added to 

run.sh (you want to experiment with the batch size, add an argument in and pass 

it to python. If you want it fixed, no need to put it in bash, the conf.yml file keeps 

it for you.) This makes it possible to directly identify the important parts of the 

experiment, without reading lots of lines of argparser or bash arguments. 
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C. Python codes :  
 

Encoder/Decoder : 

 

Network architecture : 
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Conv-TasNet Config: (Training config, optimizer….) 

 

Exemple for train.py and conf.yml : 

  

For more details about scripts visit:  

• https: //github.com/asteroid-team/asteroid 
• https: //github.com/kaituoxu/Conv-TasNet   
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Training experiment: ( training of MiniLibriMixDataset)  
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