الجممورية الجزائرية الديمتراطية الشعبية

وزارة التعليم العالبي والبدش العلمي

جامعة باجي مختار – غنابــــة

Faculté : Sciences de l'ingéniorat Département : Génie Civil Domaine : Sciences et Techniques Filière : Génie Civil Spécialité : géotechnique

UNIVERSITÉ BADJI MOKHTAR-ANNABA

BADJI MOKHTAR- ANNABAUNIVERSITY

Mémoire

Présenté en vue de l'obtention du Diplôme de Master

Thème :

L'INFLUENCE DE LA NATURE DU SOL DE FONDATION SUR LA CAPACITE PORTANTE D'UNE SEMELLE FILANTE

Présenté par : BOUDJERDA KHALED

Encadrant : PR-ABDELAMADJID HACENE CHAOUCHE

M.C.B. Université Badji Mokhtar - ANNABA

Jury de Soutenance :

Nom et prénom	Grade	Université	Président
SBARTAI BADREDDINE	Pr -	<mark>Badji Mokhtar Annaba</mark>	<mark>Président</mark>
ABDELAMADJID	D.	<mark>Badji Mokhtar Annaba</mark>	<mark>Encadrant</mark>
<mark>HACENE CHAOUCHE</mark>	ri I		
<mark>ZEMOULI SAMIRA</mark>	M.C.B	<mark>Badji Mokhtar Annaba</mark>	

Année Universitaire : 2020/2021

RESUME

Les semelles filantes constituent une solution intéressante dans des sols de bonnes ou moyennes capacités portantes et dans le cas aussi ou les charges ramenées aux fondations par les éléments structuraux tels que les poteaux qui sont assez proches l'un de l'autre. De ce fait, elles constituent une alternative à l'adoption des semelles isolées. Cette étude traite de l'influence de la nature du sol de fondation sur le comportement système sol fondation et la capacité portante de la semelle filante. A cette effet, une étude comparative entre les méthodes théoriques et approche numérique sont préconisées, tenant compte de la rigidité et la flexibilité de la semelle ainsi que la nature du sol de fondation, en l'occurrence argileux et sableux pouvant être associe à une nappe phréatique ou pas.

Mots clés : Capacité portante, fondation filante, analyse par éléments finis, Plaxis

ملخص

للدعامات المستمرة دورا مهما في التربة ذات قدرة التحمل الجيدة أو المتوسطة ، كذلك لها تأثير في عودة الأحمال إلى الأساسات بواسطة العناصر الهيكلية مثل الأعمدة التي تكون قريبة بدرجة كافية من بعضها البعض لتبنى قاعدة معزولة.

تتناول هذه الدراسة تأثير طبيعة تربة الأساس على سلوك نظام أساس التربة وقدرة التحمل لقاعدة الشريط تحقيقا لهذه الغاية، يوصى بإجراء دراسة مقارنة بين الطرق النظرية والنهج التطبيقي،مع اخذ اعتبار صلابة ومرونة الهعامة وكذلك طبيعة تربة الأساس

في هذه الحالة هل يمكن للطين والرمل أن يتوافقا مع المياه الجوفية ام لا؟

الكلمات المفتاحية: قدرة التحمل، الأساس المستمر، تحليل العناصر المحدودة، البلاكسيس

ABSTRACT

The continuous footings constitute an interesting solution in soils of good or medium bearing capacities and in the case where the loads brought back to the foundations by the structural elements such as the posts, whichare quite close to each other. Therefore, they are an alternative to the adoption of insulated soles. This study deals with the influence of the nature of the foundation soil on the soil foundation system behaviour and the bearing capacity of the strip footing. For this purpose, a comparative study between the theoretical methods and the numerical approach are recommended, taking into account the rigidity and the flexibility of the soil as well as the nature of the foundation soil, in this case clayey and sandy, which can be associated with a water table. Phreatic or not.

Key words: Bearing capacity, continuous foundation, finite element analysis, Plaxis

SOMMAIRE

*	Introduction générale et objectifs		. 01	
---	------------------------------------	--	------	--

I.1.Historique		.04
I.2. Introduction		.04
I.3. Les Fondations	superficielles	.06
I.4. Les principaux t	ypes de fondations superficielles	. 06
•	I.4.1 Les fondations filantes	. 06
•	I.4.2. Les fondations isolées	. 08
•	I.4.3. Les radiers ou dallages	. 09
I.5. Fonctionnement	des semelles superficielles	. 10
I.6 Mécanisme de ru	pture d'une fondation superficielle	10
•	I.6.1 Rupture par cisaillement générale	. 11
•	I.6.2 Rupture par cisaillement local	.11
•	I.6.3 Rupture par poinçonnement	.12
I.7. Philosophies de	conception des fondations	.14
•	I.7.1 Méthode de contrainte admissible (utilisation de facteur de sécurité)	.14
•	I.7.2 Méthode d'état limite (utilisation du facteur partiel de sécurité)	.14
I.8. Conclusion		.14
-CHAPITRE II	Méthodes de résolution analytiques ou théorique portant sur les	I

CHAPITRE I:Généralités sur les fondations superficielles

-

semelles filantes

II.1 Introduction		17
II.2 problème équiv	alent	17
II.3 Définition de la	capacité portante	17
II.4 Méthodes de ca	cul de la capacité portante pour le cas d'un chargement vertical	18
•	II.4.1 Théorie de Rankine : (les coins de Rankine)	18
•	II.4.2 Théorie de Prandtl (1920)	20
•	II.4.3 Théorie de Terzaghi (1943)	21
\wedge	II.4.3.1 Principe de superposition de Terzaghi	22
\checkmark	II.4.3.2 Rupture à court terme et à long terme	25
►	II.4.3.3 Détermination des coefficients Ny, Nq, Nc, selon A. Caquot et J. Kérisel	25

- CHAPITRE III: Méthode de résolution numérique sur les semelles filantes

III.1 APPROCHE NUMERIQUE BASE SUR LA METHODE DES ELEMENTS FINIS (MEF)......30

•	III.1.1 Introduction	. 30
•	III. 1.2Historique de la M.E.F	. 30
•	III.1.3 le principe de la méthode	. 30
•	III.1.4 le principe des travaux virtuels	. 32
•	III.1.5 fonction de base	. 33
•	III.1.6 choix du maillage	. 34
•	III.1.7 Modélisation de système en élément fini (M.E.F)	. 35
•	III.1.8 application aux calculs des ouvrages souterrains	. 35
•	III.1.9 programmes généraux	. 36
•	III.1.10 fonction d'interpolation pour les éléments triangulaires	. 37
•	III.1.11 Intégration numérique des éléments linéaires	. 38
•	III.1.12 Intégration numérique des éléments triangulaires	. 39
•	III.1.13 calcul de matrice de rigidité d'élément	. 41
III.2 PRESENTAT	ION DU CODE DE CALCUL PLAXIS	41
•	III.2.1Présentation de Plaxis	. 42
•	III.2.2. Description de code de calcul Plaxis	. 42
•	III.2.3 Les Points Forts De Plaxis	. 43
•	III.2.4. Les Lois De Comportements Utilisent Dans Plaxis	. 43
\triangleright	III.2.4.1 Introduction	. 43
\blacktriangleright	III.2.4.2 Comportement Elastoplastique	. 44
\blacktriangleright	III.2.4.3 Modèle Elastique Linéaire	. 45
\blacktriangleright	III.2.4.4Modèle De Mohr-Coulomb	. 46
\blacktriangleright	III.2.4.5 Le Module De Young	. 47
\blacktriangleright	III.2.4.6 Le Coefficient De Poisson	. 47
\blacktriangleright	III.2.4.7 L'angle De Frottement $\boldsymbol{\varphi}$. 47
\succ	III.2.4.8 La Cohésion	. 48
\succ	III.2.4.9 Angle De Dilatance	. 48
\blacktriangleright	III.2.4.10 Conclusion	. 48

- CHAPITRE IV : Etude paramétrique

-

IV.1 Introduction	
IV.2 Etude paramétrique	
A. Calcul de la capacité portante d'une semelle filante sous charge verticale	
IV.3 La méthode analytique	51
IV.4 Comparaison des résultats de la capacité portante d'une semelle filante	
IV.5 Procédure de la simulation numérique	54
IV.5.1 Coupe géotechnique et géométrie de l'ouvrage	
IV.5.2 Caractéristiques géotechniques des matériaux	
• IV.5.3. Entrée des caractéristiques générales (M.E.F)	

B. Influence de la nappe phréatique

IV.6La méthode analytique	64
IV.7 Comparaisons entre les valeurs de la capacité portante en fonction de la nappe phréatique	68
IV.8 Méthode des éléments finis	70
IV.9Conclusion finale	83

- CHAPITRE V: conclusions et recommandations

Conclusions	
Recommandations	
Références bibliographiques	
Nétrographique	

Figures

Figure I.1: Types de fondations	5
Figure I.2 : Fondations superficielles.	6
Figure I.3: Semelle filante	7
Figure I.4: Semelle isolée	9
Figure I.5: Fondation de type radier	9
Figure I.6: Courbe de chargement d'une fondation superficielle	10
Figure I.7: Rupture par cisaillement généralisé	11
Figure I.8: Rupture par cisaillement localisé	12
Figure I.9: Rupture par poinçonnement	13
Figure I.10 : Mécanisme de rupture dans le sol (a) mécanisme de cisaillement général ; (b) mécanisme de cisaillement local ; (c) mécanisme de rupture par poinçonnement Vesic, A.S, 1973	13
Figure <i>II.1</i> : problème équivalent	17
Figure II.2 : Schématisation de l'évolution des déplacements verticaux Sous une fondation superficielle en fo de l'augmentation de la charge (d'après Frank)	onction
Figure.II.3 : Semelle filante reposant sur un sol $(c.\phi)$	19
Figure II.4 : Les coins de Rankine	19
Figure II.5 : Mécanisme de rupture d'une fondation de base lisse (Prandtl (1920))	
Figure II.6 : surface de rupture du sol sous une charge ultime d'une semelle Filante rigide d'après Terzaghi	21
Figure II.7: Schéma de rupture d'une fondation superficielle	
Figure II.8 : Capacité portante. Méthode de superposition de Terzaghi	22
Figure II.9: Valeurs de Nc (ϕ '), $N_{\gamma}(\phi$ ') et Nq(ϕ ') recommandées par Terzaghi et Peck	24
Figure II.10 : Facteur De La Capacité Portante Suivant Terzaghi	
Figure II.11 : Détermination du terme de surface.(Philipponat G. Hubert B)	26
Figure II.12 : Détermination du terme de profondeur	27
Figure II.13 : Détermination du Terme de Cohésion Nc.	

Figure III.1 : Le principe des éléments finis	34
Figure III.2 Génération du maillage	
Figure III.3 : Organigramme des programmes généraux	
Figure III.4: Modèle monodimensionnel du comportement élasto plastique	44
Figure III.5 : comportement élastique-parfaitement plastique	44
Figure III.6: Représentation du comportement élastoplastique avec écrouissage	45
Figure 11.0. Representation du comportement clastoplastique avec cerouissage	т. Ас
Figure III.7 : Pyramide de Mohr-Coulomb tracee pour C=0	
Figure IV.1 : Présentation du cas étudié	
Figure IV.2 : Variation de la capacité portante en fonction de la nature du sol	54
Figure IV.3 : Définition de la géométrie du problème.	56
Figure IV.4 : Propriétés générales	56
Figure IV.5: Valeurs des paramètres	56
Figure IV.6 : Maillage du problème	57
Figure IV.7 : Initialisation des contraintes	58
Figure IV.8 : Contraintes initiales.	58
Figure IV.9 : Définition de la charge à 350 kPa (par double-clic sur la surcharge)	59
Figure IV.10 : Points dont on suit le déplacement.	59
Figure IV.11 : Ecran de fin de calcul	59
Figure IV.12 : Bilan du calcul	59
Figure IV.13 : Contraintes totale	60
Figure IV.14 : Définition de la géométrie du problème	60
Figure IV.15 : phase de calcul	60
Figure IV.16 : Contraintes totales.	61
Figure IV.17 : Présentation du model étudié	61
Figure IV.18 : phase de calcul (Capacité portante).	61
Figure IV.19 : Contraintes effective	
Figure IV.20 : Présentation du model étudié	62
Figure IV.21 : phase de calcul (Capacité portante).	
Figure IV.22 : Contraintes effective	63
Figure IV.23 : Variation de la capacité portante avec la présence d'une nappe a Hw= 8	64
Figure IV.24 : Variation de la capacité portante avec la présence d'une nappe a Hw= 4	69
Figure IV.25 : Présentation du model étudié.	69
Figure IV.26 : le model étudié avec la nappe	70
Figure IV.27 : phase de calcul (Capacité portante).	71

Figure IV.28 : Contraintes totales	.71
Figure IV.29 : Présentation du model étudie	.71
Figure IV.30 : Le model étudie avec nappe	.71
Figure IV.31 : Phase de calcul (Capacité portante).	.71
Figure IV.32 : Contraintes totales	.71
Figure IV.33 : Présentation du model étudié.	.72
Figure IV.34 : le model étudié avec la nappe	.72
Figure IV.35 : Phase de calcul	.72
Figure IV.36 : Contrainte effective	.72
Figure IV.37 : Présentation du model étudié	.73
Figure IV.38 : le model étudié avec la nappe	.73
Figure IV.39 : Phase de calcul	.73
Figure IV.40 : Contraintes totale	.73
Figure IV.41 : Présentation du model étudié	.74
Figure IV.42 : le model étudié avec la nappe	. 74
Figure IV.43 : Phase de calcul (Capacité portante).	. 74
Figure IV.44 : Contraintes effectives	.75
Figure IV.45 : Présentation du model étudié.	.75
Figure IV.46 : le model étudié avec la nappe	.75
Figure IV.47 : Phase de calcul (Capacité portante).	.75
Figure IV.48 : Contrainte effective	. 76
Figure IV.49 : Présentation du model étudié	. 76
Figure IV.50 : le model étudié avec la nappe	. 76
Figure IV.51 : Plan de calcul	.77
Figure IV.52 : Contraintes effectives	. 77
Figure IV.53 : Présentation du model étudié	.77
Figure IV.54 : le model étudié avec la nappe	. 78
Figure IV.55 : Phase de calcul	. 78
Figure IV.56 : Contraintes effectives	. 78
Figure IV.57 : Les résultats globaux analytiques de cette étude	. 78
Figure IV.58 :Les résultats globaux de la M.E.F de cette étude	. 79
Figure IV.59 :La variation de la capacité portante en présence de la hauteur de la nappe Hw=4 selon les	
deux méthodes	80
Figure IV.60 :Les résultats globaux analytiques de cette étude	.81
Figure IV.61:Les résultats globaux de la M.E.F de cette étude	2

Liste des tableaux

Chapitre III

Tableau III.1: La méthode d'intégration de Newton-cote	
Tableau : III .2La méthode d'intégration de gauss	
ChapitreIV	
Tableau IV.1 : Résultats de la capacité portante d'une semelle filante	53
Tableau IV.2 :Grandeurs physiques et mécaniques de l'argile	55
Tableau IV.3 :Grandeurs physiques et mécaniques du sable	55
Tableau IV.4 : la variation de la capacité portante entre les deux sols selon les deux méthodes	63
Tableau IV.5 : Les valeurs de la capacité portante en fonction de la hauteur de la nappe phréatique	68
Tableau IV.6 : la variation de la capacité portante entre les deux sols avec une nappe phréatiques les deux méthodes	h _w =8 selon 79
Tableau IV.7 : la variation de la capacité portante entre les deux sols avec une nappe phréatiques les deux méthodes	h _w =4 selon 80
Tableau IV.8 : les taux de variation de la capacite portante analytiques de cette étude	81
Tableau IV.9 : les taux de variation de la capacité portante par la M.E.F de cette étude	82

* <u>INTRODUCTION GENERALE</u>

La capacité portante a toujours été l'un des sujets les plus intéressants en mécanique des sols et des fondations. On appelle pression admissible la pression ou contrainte maximum qui puisse être appliquée par une structure sur un sol, sans qu'il y ait de tassements excessifs et de risque de rupture du sol. En pratique l'incertitude sur ce problème fait introduire un coefficient de sécurité (Fs) entre 3 et 4.

Il existe une littérature étendue traitant le calcul de la capacité portante des fondations, par les deux méthodes

expérimentales et théoriques. Une liste des principales contributions de ce sujet peut être trouvée dans Vesic (1973), Chen et McCarron (1991) et Tan et Craig (1995).

Les procédures de calcul classiques de la capacité portante basées sur la méthode de l'équilibre limite imposent, d'une part, les directions des plans de rupture, représentent une approximation très grossière. D'autres parts ces théories supposent que le sol se comporte comme un matériau associé, avec un angle de dilatance ψ égal à l'angle de frottement interne φ . Il est bien connu que pour les sols réels, l'angle de dilatance est généralement considéré inférieur à l'angle de frottement interne.

La plupart des méthodes d'estimation de la capacité portante sont basées sur des études effectuées originalement sur une semelle filante, Prandtl (1921) et Reissner (1924) modifiées plus tard afin de les adapter à d'autres conditions comme par exemple la forme de la fondation, l'inclinaison de la charge, l'excentrement de la chargeetc.

♦ <u>OBJECTIFS</u>

Ce travail est considéré comme une initiation à la recherche dans le domaine de l'analyse de l'influence de la nature du sol de fondation sur la capacité portante d'une semelle filante.

L'étude a été réalisée à l'aide du logiciel Plaxis 2D V.8.6 ou le sol a été modélisé avec la loi de comportement de Mohr-Coulomb, après une comparaison avec la méthode analytique.

Ce mémoire est structuré comme suit :

- Dans le chapitre 01 :Nous rappelons un certain nombre de connaissances de base sur la définition des fondations superficielles, leur fonctionnement.
- > Dans le chapitre 02 : Comporte l'approche théorique de calcul de la capacité portante.
- Dans le chapitre 03 : présente les méthodes de calcul de la capacité portante des fondations superficielles. On rappelle brièvement la méthode la plus utilisée est la méthode des éléments finis et une approche numérique grâce au logiciel PLAXIS
- Dans le chapitre 04 : il met en évidence une étude paramétrique qui consiste à concretiser les objectifs que nous nous sommes fixés pour cette recherche. En effet, il s'agit de mettre en évidence l'influence du type de sol (Argileux et sableux) ainsi que l'influence des effets à court et à long terme.

Dans le chapitre 05 : nous avons pu réunir et analyser les résultats issus de l'étude paramétrique, ce qui nous a permis d'en tirer certaines conclusions et émettre certaines recommandations utiles pour des recherches ou applications futures

<u>CHAPITRE I</u>

GENERALITE SUR LES FONDATIONS SUPERFICIELLES

I.1 <u>HISTORIQUE</u>

• A travers les siècles de développement de l'humanité, l'homme dans sa quête d'épanouissement, a toujours été poussé à explorer et découvrir les Secrets de environnement dans lequel il évolue, afin de résoudre tous les problèmes qu'il rencontre dans sa vie quotidienne, et ce, par la recherche théorique et expérimentale. Ce besoin vital a poussé à l'invention et l'innovation dans tous les domaines de la science. Parmi ces premiers besoins, le constructiviste qui est liée intimement à la disponibilité des matériaux, et la plupart des matériaux utilisés et des techniques pratiquées en construction depuis les temps reculés le sont encore au XXVIII^{ème} – XIX^{ème} siècle. Jusqu'à la révolution industrielle qui se profile à partir du XVIII^{ème} siècle, où elle devient progressivement une industrie.

• Les fondations, du XVIIIe à la fin du XIXe, n'étaient pas très différentes dans leur principe de celles du Moyen Age : des semelles ou des radiers quand cela suffisait et sinon des forêts de pieux battus en bois dont les têtes étaient reprises dans les radiers.

Si cela était nécessaire, à cause de la présence d'eau, on réalisait des caissons étanches à l'abri desquels on terrassait en pompant pour atteindre le bon sol et s'y fonder ou pour battre des pieux depuis le fond du caisson.

Au début du XXe, les fondations de l'Irving Building à New York, "maison géante de cent mètres de hauteur" ou "Sky-craper", en 1913 ressemblent étonnamment à celles de nos cathédrales du Moyen Âge.

I. 2 INTRODUCTION

La partie inférieure d'une structure qui transmit les charges au sol est désignée par le terme de « Fondations ». Les fondations peuvent être classées en deux majeures catégories, ce sont les fondations superficielles et les fondations profondes.

Quand le sol sous-jacent à la structure (fondations) ne peut pas supporter la charge appliquée ou les tassements sont trop importants, les charges provenant de la structure sont transmis au moyen de pieux et puits à de grandes profondeurs sur des couches plus résistantes ; ces types de fondations sont désignés par le terme « fondations profondes ».

Figure I.1: Types de fondations

Les éléments géométriques qui définissent une fondation superficielle sont:

- B : la largeur de la fondation ;
- L : la longueur de la fondation ;
- D : l'encastrement qui est la profondeur de la base de fondation.

Figure I.2 : Fondations superficielles

I. <u>3 Fondations superficielles</u>

Les fondations superficielles sont des fondations faiblement encastrées qui reportent les charges au niveau des couches superficielles de terrains. Les fondations profondes reportent les charges dans les couches profondes, mais aussi dans, les couches superficielles, qu'elles traversent. Pour différencier ces deux types de fondations on est amené à définir la notion de profondeur critique qui est la profondeur au-dessous de laquelle la résistance sous la base de la fondation n'augmente plus. Les fondations superficielles ont leurs bases au- dessus de cette profondeur critique.

Une fondation est dite superficielle si D < 1,5 B

- Si D > 5B la fondation est dite profonde.
- Si 1,5B<D<5B la fondation est semi profonde

I. 4. Principaux types de fondations superficielles

On distingue trois types de fondations superficielles : les fondations filantes, les fondations isolées et les radiers ou

Dallage

14.1Les fondations filantes

Lorsque la descente de charges n'est plus concentrée (sous un mur classique), on met logiquement en œuvre une fondation de type filante, c'est à dire continue sous l'objet fondé.

CHAPITRE IGENERALITE SUR LES FONDATIONS SUPERFICIELLES

Les fondations filantes, généralement de largeur B modeste (au plus quelques mètres) et de grande longueur L (L/B > 10 pour fixer les idées).

A/1. Les trois paramètres principaux influençant la conception d'une semelle filante

- 1. Compressibilité du sol
- 2. Rigidité de la semelle
- 3. Répartition des forces

A. Rigidité de la semelle et compressibilité du sol

- Il est prudent de faire une analyse détaillée de l'interaction entre le sol et la semelle, mais cette analyse longue et complexe n'est pas toujours nécessaire.
- En pratique, on utilisera une méthode simplifiée qui permettra un dimensionnement crédible de la semelle filante selon le type de semelle et de sol.
- Il y a quatre cas possibles selon
 - La composition du sol qui est :
 - ✓ Soituniforme
 - ✓ Soit variable
 - La nature de la semelle qui est :
 - ✓ Soitrigide
 - ✓ soit flexible

- Dans le cas d'un sol uniforme
- Si la semelle est rigide, la force portante en tout point de la semelle est la même.

• Par contre, si la semelle est flexible, la force portante est plus grande en dessous d'une colonne qu'entre deux colonnes.

B. Répartition des contraintes

- Une variation de la force portante, due à la rigidité de la semelle et à la compressibilité du sol, peut gravement affecter les valeurs des moments.
- Par exemple : affaiblissement de la force portante au centre de la semelle (60 kN/m au lieu de 100 kN/m)
- En réalité, la distribution de la force portante de la semelle est plus uniforme, c'est pourquoi on peut calculer les semelles avec ce modèle simplifié, tant que la composition du sol sera plus ou moins homogène.

II 4.2 Les fondations isolées

On entend par isolée, une fondation présentant une géométrie proche du carré (ou du rond).

Ce type de fondation est mis en œuvre dans le cadre d'un bâtiment présentant des descentes de charges concentrées (poteaux, longrines sous murs).

- Exemple : Une semelle sous un poteau.

Les fondations isolées, dont les dimensions en plan B et L sont toutes deux au plus de quelques mètres ; cette catégorie inclut les semelles carrées (B/L = 1) et les semelles circulaires (de diamètre B) ;

Figure I.4 :Semelle isolée

III 4.3 Les radiers ou dallages

Les radiers ou dallages ont des dimensions B et L importantes ; cette catégorie inclut les radiers généraux.

Pour des raisons de coût, on cherche souvent à fonder un ouvrage superficiellement. Si cette solution n'est pas satisfaisante d'un point de vue technique ou économique, une solution en fondation profonde est envisagée.

Figure I.5: Fondation de type radier

CHAPITRE IGENERALITE SUR LES FONDATIONS SUPERFICIELLES

I. 5 Fonctionnement des semelles superficielles

Un mur ou un poteau supporte une partie des charges de l'ouvrage et compte-tenu ses faibles dimensions, risquent de poinçonner le sol. C'est pour cela que sous un mur ou un poteau, on place une fondation qui permet de répartir la même charge mais sur une surface horizontal plus importante et donc de diminuer la pression exercée sur le sol, c'est-à-dire de diminuer la force exercée sur le sol par unité se surface.

Il faudra toujours assurer que la pression exercée par la fondation sur le sol est inférieur à la pression que peut supporter le sol, elle déterminer grâce aux essais de reconnaissance de sol.

Donc la fonction d'une fondation est de transmettre au sol les charges qui résultent des actions appliquées sur la structure qu'elle supporte. Cela suppose doncque le concepteurconnaisse.

I. 6 <u>Mécanisme de rupture d'une fondation superficielle</u>

Soit une fondation superficielle de largeur B dont la base se trouvant à une profondeurDf au-dessous de la surface du sol. Si cette fondation est soumise à une charge Q qui est graduellement augmentée, la charge par unité de surface, q = Q / A (A: surface de la fondation), augmentera et la fondation subira un tassement. Au début du chargement, la déformation du sol sous la semelle augmente approximativement en fonction de la charge, il s'agit donc d'un équilibre pseudo élastique, puis la déformation prend des valeurs nettement plus grandes.

Si le sol sous la base de la fondation est formé d'un sol ferme, tel qu'un sable dense où une argile raide, on appliquant la charge, il y a formation d'un coin sous la base de la Fondation, qui refoule le sol latéralement selon des lignes de glissement débouchant à la surface. L'enfoncement de la fondation provoque généralement un soulèvement du sol d'autant plus net que la structure est moins déformable. C'est le cas pour les sols relativementrésistants.

Suivant l'état de compacité du sol, on distingue trois mécanismes de rupture du sol :

- Un mécanisme de rupture par cisaillement générale.
- Un mécanisme de rupture par cisaillement locale.
- Un mécanisme de rupture par poinçonnement.

I. 6.1 <u>Rupture par cisaillement générale</u>

Ce mode de rupture est caractérisé par la formation d'un coin sous la base de la fondation, qui refoule le sol latéralement selon des lignes de glissement débouchant à la surface.

Dans des conditions de contrainte imposée, sous laquelle la plupart des fondations travaillent, la rupture est soudaine et catastrophique. Sauf si la structure empêche la rotation de la fondation, dans ce cas la rupture est accompagnée par un basculement de la semelle. Une tendance de refoulement du sol adjacent de la fondation sur les deux cotés peut être remarquée, mais l'effondrement final du sol prend place sur un seul côté. C'est le cas d'un sable dense.

Figure I.7: Rupture par cisaillementgénéralisé

I. 6.2 <u>Rupture par cisaillement local</u>

La fondation a un état de compacité intermédiaire, dans ce cas la forme de chemin de rupture est similaire à celle du cisaillement général ; la différence entre la rupture par cisaillement local et général est déterminer seulement au voisinage immédiat de la semelle et les lignes de glissement et n'atteignent pas la surface du sol. On peut observer un soulèvement de sol sur les deux côtés de la fondation mais après un tassement relativement important.

Figure I.8: Rupture par cisaillementlocalisé

I. 6.3 <u>Rupture par poinçonnement</u>

Contrairement aux deux mécanismes de rupture précédents, dans ce mécanisme la fondation pénètre verticalement dans le massif sans perturber le sol qui n'est pas directement sous la fondation donc il y a ni surface de glissement ni un soulèvement de sol sur les deux côtés.

Pour les sols cohérents, l'application du chargement est accompagnée d'une augmentation de la pression interstitielle. Mais comme la vitesse de chargement est souvent supérieure à la vitesse nécessaire pour la dissipation de ces suppressions, il est raisonnable de supposer que l'enfoncement s'effectue à volume constant (dans les conditions non drainées).

Pour les sols pulvérulents, l'application du chargement entraine une variation de volume due à la réorganisation des grains (désenchevêtrèrent ou compaction des grains selon les niveaux de contrainte atteints).

La charge de rupture peut être estimée par des calculs relativement simples en supposant que les paramètres de résistance des sols au voisinage de la fondation sont connus.

Figure I.9: Rupture par poinçonnement

Figure I.10: Mécanisme de rupture dans le sol (a) mécanisme de cisaillement général ; (b) mécanisme de cisaillement local ; (c) mécanisme de rupture par poinçonnement Vesic, A.S,1973

CHAPITRE IGENERALITE SUR LES FONDATIONS SUPERFICIELLES

I. 7 PHILOSOPHIES DE CONCEPTION DES FONDATIONS

I. 7.1 <u>Méthode de contrainte admissible (utilisation de facteur de sécurité)</u>

Le facteur de sécurité Fs est de l'ordre de 2 à 3 ou plus, il est employé pour s'assurer que les charges des fondations sont de manière significative moins que la résistance au cisaillement du sol de support et que les tassements ne sont pas excessifs.

La valeur relativement élevée du facteur singulier de la sécurité tient compte de :

- Incertitudes vis-à-vis les conditions de charge et des variations défavorables de charge.
- Incertitudes vis-à-vis l'état de sol ainsi que ses paramètres.
- Conséquences de rupture, incertitudes dans les méthodes d'analyse(Mode rupture, etc.).

I. 7.2 <u>Méthode d'état limite (utilisation du facteur partiel de sécurité)</u>

Vise à s'assurer que toutes les conditions d'exécution appropriées sont satisfaites dans toutes les circonstances imaginables:

- État Limite ultimeConcerné par l'effondrement et l'endommage majeur.
- État Limite D'utilitéConcerné par l'utilité et l'endommage mineur.

Les exemples des états de limites incluent:

- Rupture par cisaillement.
- Rupture par glissement.
- Rupture par renversement.
- Tassement ou soulèvement excessif.
- Rupture de la structure de l'élément de fondation.

Il convient de noter que la portance admissible des fondations superficielles est presque toujours commandée par des critères de tassement et très rarement par des critères de rupture par cisaillement. Cependant, en ce qui concerne la sécurité contre la rupture de cisaillement, la charge structurale permise sur une fondation est calculée par la méthode contrainte admissible.

I. 8 <u>CONCLUSION</u>

Une fondation superficielle est une fondation dont l'encastrement D dans le sol n'excède pas quatre fois la largeur B. Le mécanisme de rupture et la distribution des contraintes sous la fondation dépendent généralement de la nature du

CHAPITRE IGENERALITE SUR LES FONDATIONS SUPERFICIELLES

sol. Plus le sol est compact et présente une bonne résistance au cisaillement, plus il aura de portance, et donc, plus la semelle aura des dimensions réduites.

Un projet de fondation superficielle correct doit répondre aux préoccupations suivantes :

La fondation doit exercer sur le sol des contraintes compatibles avec la résistance à la rupture de celui-ci, c'est le problème de la capacité portante.

Le tassement de la fondation doit être limité pour éviter le basculement ou la ruine de l'ensemble et pour empêcher l'apparition de fissures localisées qui rendraient l'ouvrage inutilisable.

CHAPITRE II

METHODES DE RESOLUTION ANALYTIQUES OU THEORIQUES PORTANT SUR LES SEMELLES FILANTES

II.1 INTRODUCTION

La détermination de la force portante des fondations est l'un des problèmes les plus importants de la mécanique des sols. On appelle pression admissible la pression ou contrainte maximale qui puisse être appliquée par une structure sur un sol, sans qu'il y ait de tassements excessifs et de risque de rupture du sol.

Deux types d'éléments sont à analyser pour une fondation superficielle

- La capacité portante de la fondation. C'est-à-dire vérifier les terrains (et éventuellement le matériau de fondation qui peuvent effectivement supporter la charge transmise).
- Le tassement sous les charges de fonctionnement.

La capacité portante est généralement déterminée à partir des propriétés mécaniques des terrains mesurées soit au laboratoire, soit in-situ.

Parfois la détermination de la capacité portante est effectuée à partir d'essai de chargement, mais ceci est très rare pour les fondations superficielles.

Le présent chapitre est consacré aux méthodes de calcul de la capacité portante. Après une présentation des méthodes classiques par ordre chronologique, nous illustrons les différents cas particuliers des fondations qui dépendent de plusieurs paramètres comme (caractéristiques mécaniques, morphologie des terrains...etc.)

II.2 PROBLEME EQUIVALENT

La fondation ne se pose pas sur la surface du sol, en règle générale elle est placée, après Creusement, à une profondeur D. La base de la semelle est alors choisie comme plan de référence sur lequel s'exercent des contraintes de compression égale à Qu/B à l'emplacement de la semelle et $aq_s = \gamma D$ à l'extérieur. Ce nouveau schéma résume le problème équivalent qui se substitue au cas réel pour résoudre les problèmes de fondation.

II.3 DEFINITION DE LA CAPACITE PORTANTE

Si on applique une charge Q croissante à une fondation, au début du chargement le comportement est sensiblement linéaire (Les déplacements verticaux croissent proportionnellement à la charge appliquée). A partir d'une certaine charge Q_d , les déplacements ne sont plus proportionnels à la charge. Enfin, pour une charge QL les déplacements

deviennent incontrôlables, le sol n'est plus capable de supporter une charge supérieure, figure (II.2). Cette charge est la charge limite ou ultime, ou encore la capacité portante de la fondation.

Figure II.2 : Schématisation de l'évolution des déplacements verticaux Sous une fondation superficielle en fonction de l'augmentation de la charge (d'après Frank).

II.4 <u>METHODES DE CALCUL DE LA CAPACITE PORTANTE POUR LE CAS D'UN</u> <u>CHARGEMENT VERTICAL</u>

Aucune solution mathématique rigoureuse ne permet encore d'analyser le phénomène de la rupture. Bien des méthodes ont été proposées, mais toutes admettent quelques approximations simplificatrices quant aux propriétés du sol et aux déplacements qui se produisent, approximations non conformes aux phénomènes observés. En dépit de ces insuffisances, les comparaisons entre les capacités portantes limites de modèles réduits et de fondations en vraie grandeur montrent que la marge d'erreur est un peu plus grande que pour les problèmes de stabilité avec les autres matériaux.

Les études de stabilité à la rupture (habituellement dénommée cisaillement total) repose sur l'hypothèse que le sol se comporte comme un matériau plastique idéal. Cette hypothèse fut avancée pour la première fois par Prandtl au sujet du poinçonnement des métaux, puits étendue à l'étude des sols par Terzaghi, Meyerhof, Buisman, Caquot & Kérisel et De Beer&Vesic, leur approche générale du problème est identique : une fondation de longueur infinie et de largeur B exerce une pression moyenne qu sur un sol homogène dont le poids spécifique est γ .

La charge qui agit sur la fondation est verticale, constante, et s'exerce dans l'axe de la semelle. On se trouve donc en présence d'un problème à deux dimensions.

II.4.1 Théorie de Rankine : (les coins de Rankine)

La figure (II.3) représente une semelle filante de rapport (L/B) très grand et un encastrement D, et qui repose sur un sol de cohésion C, avec un angle de frottement φ . La figure (II.4) représente les coins de Rankine utilisés dans cette analyse.

- Le coin I est un coin actif,
- Le coin II est un coin passif.

Les résistances horizontales ou latérales et qui agissent sur l'interface des deux coins sont désignées par « P » et elles se caractérisent par une même magnitude et deux directions opposées. Cependant, la force P associée au coin (I) représente la pression active. Tandis que la force P du coin (II) est la pression passive.

Figure.II.3 : Semelle filante reposant sur un sol $(c.\phi)$

Figure II.4 : Les coins de Rankine

La capacité portante : $q_u = C N_C + qN_q + \frac{1}{2}\gamma \cdot B \cdot N_\gamma Où$

 N_{γ} : est le facteur de surface

 N_c : est le facteur de cohésion

 N_q : est le facteur de profondeur

Master II Géotechnique

Le schéma de Rankine n'est qu'une approximation très grossière du véritable comportement du sol. En réalité, les expérimentations sur modèles réduits montrent que sous la fondation se forme un coin, limité par des forces planes inclinées qui s'enfonce avec la semelle et se conduit en corps solide. Il exerce une poussée sur le sol adjacent qui réagit en butée avec frottement sol- sur- sol.

II.4.2 Théorie de Prandtl (1920)

D'après Prandtl, le mécanisme de rupture sous la fondation considère que la base de la Fondation est lisse, donc un état actif de Rankine est développé dans le coin AA'O (figureII.5).

Le système est formé par trois zones successives.

- La zone I en équilibre de poussée de Rankine.
- La zone II en équilibre de Prandtl.
- La zone III en équilibre de buttée de Rankine.

Dans la zone I et III, la famille de lignes de glissement est formée de droites.

Dans la zone II, une famille de ligne de glissement est constituée de courbe. Il s'agit de lignes de glissement appartenant à cette même famille et qui sont homothétiques entre elles et forment des spirales logarithmiques. L'autre famille des lignes de glissement est formée de droites, faisant un angle de φ avec la normale aux points d'intersection avec les spirales, et ayant toutes un point de rebroussement à l'intersection des deux surcharges. Il est à noter que les spirales logarithmiques peuvent s'écrire sous la forme, en

coordonnées polaires, de : (r = r .e θ tan Φ)

Figure II.5 : Mécanisme de rupture d'une fondation de base lisse (Prandtl (1920)).

Le problème se ramène à l'étude de l'équilibre du bloc (AOe) en écrivant que le moment en A de l'ensemble des forces est nul.

Le problème bidimensionnel d'un sol pulvérulent non pesant d'angle de frottement interne φ et chargé normalement à sa surface par deux répartitions uniforme, a été résolu pour la première fois par Prandtl [1920].

On notera q1 et q2 les intensités des contraintes critiques qui agissent respectivement sur les rayons polaires AO et Ae.

On aboutit donc finalement ;

$$q_u = \gamma \operatorname{D} tg^2 \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) e^{\pi tg\varphi} \operatorname{C'est-à-dire}: \quad N_q = tg^2 \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) e^{\pi tg\varphi}$$

Cette formule est quelque fois appelée formule de Prandtl Caquot, car ces deux auteurs l'on publiée, indépendamment l'un de l'autre vers [1920].

II.4.3 Théorie de Terzaghi

En 1948, Terzaghi propose une théorie assez bien conçue pour déterminer la capacité portante ultime pour une fondation superficielle (rigide, continue, et avec une base rugueuse) supportée par un sol homogène d'assez grande profondeur ; Terzaghi défini les paramètres géométriques de la fondation superficielle comme suite : $B \le Df$ (B : Largeur de la semelle), Df Profondeur de l'ancrage. La surface de rupture dans le sol provoquée par la charge ultime (qu) ; la surface de rupture du sol sous la fondation peut être divisé en trois (03) majeures zones. Cesont :

> Zone abc : c'est zone triangulaire élastique située immédiatement sous la fondation.

L'inclinaison des faces *ac* et *bc* avec l'horizontale est l'angle $\alpha=\Phi$ (angle de frottement du sol).

- > Zone *bcf*. Cette zone est dite zone de cisaillement radial de Prandtl.
- Zone bfg. c'est la zone passive de Rankine. Les lignes inclinées dans cette zone font un angle de ± (45-Φ/2) avec l'horizontale. Il est à noterque la zone de cisaillement Radial '2', et la zone passive de Rankine '3' existe aussi à gauche du triangle élastique
- Zone *abc*, cependant ils ne sont pas montrés. La ligne *cf* est un arc spiral logarithmique définie par l'équation (r = r .eθ tan Φ)

-Les lignes b*f* et *f*g sont des lignes rectilignes. En principe, la droite *f*g continue jusqu'à la Surface du sol, mais Terzaghi à supposer que le sol au-dessus du niveau de la base de la semelle est remplacé par une surcharge = γ D*f*.

Figure II.6 surface de rupture du sol sous une charge ultime d'une semelleFilante rigide d'après Terzaghi

II.4.3.1 Principe de superposition de Terzaghi

Considérons la figure II.7 qui est le schéma de rupture d'une fondation superficielle :

Figure II.7: Schéma de rupture d'une fondation superficielle

Le principe de superposition consiste à superposer trois états (*Figure* II.8):

Figure II.8 : Capacité portante. Méthode de superposition de Terzaghi (méthode « c-_ »)

- *Etat 1* : Résistance du sol pulvérulent sous le niveau de la semelle \rightarrow entraîne une résistance « $Q\gamma$ »
- *Etat 2 :* Action des terres situées au-dessus du niveau des fondations et supposée agir comme une surcharge
 Entraîne une résistance « Qq»
- *Etat 3* : Action de la cohésion \longrightarrow entraîne une résistance « Qc »

Dans le cas d'une semelle filante, la contrainte de rupture sous charge verticale centrée est obtenue par la relation générale suivante :

$$q_u = \frac{1}{2} \boldsymbol{\gamma}_1 \cdot \mathbf{B} \cdot N_{\boldsymbol{\gamma}}(\boldsymbol{\varphi}) + (\mathbf{q} + \boldsymbol{\gamma}_2 \boldsymbol{D}) N_q(\boldsymbol{\varphi}) + \mathbf{C} N_c(\boldsymbol{\varphi})$$

Avec :

ql: Contrainte de rupture (capacité portante par unité de surface),

 γ_1 : Poids volumique du sol sous la base de la fondation,

 γ_2 : Poids volumique du sol latéralement à la fondation,

q: surcharge verticale latérale à la fondation,

C : cohésion du sol sous la base de la fondation,

 $N(\phi)$, $Nc(\phi)$ et $Nq(\phi)$: facteurs de portance, ne dépendant que de l'angle de frottement interne « ϕ » du sol sous la base de la fondation.

- Le premier terme $(1/2 \gamma_1 BN_{\gamma}(\varphi))$ est le « *terme de surface* » (ou de pesanteur). C'est la charge limite pour un massif pesant et frottant uniquement
- Le deuxième terme C $N_C(\varphi)$ est « *le terme de cohésion* ». C'est la charge limite pour un sol frottant et cohérent, mais non pesant.
- Le troisième terme $(q+\gamma_2 D)N_q(\varphi)$ est le « *terme de surcharge* » ou de profondeur.

C'est la charge limite pour un sol uniquement frottant et chargé latéralement est (γ_2) le poids volumique du sol au-dessus du niveau de la base).

Pour les valeurs des facteurs de portance sans dimension $N_C(\varphi)$ et $N_q(\varphi)$, on utilise la solution classique de Prandtl (solution exacte) :

 $N_q = tg^2(\frac{\pi}{4} + \frac{\varphi}{2})e^{\pi tg\varphi} N_C = (N_q - 1).\cos\varphi'$

Ces valeurs sont données sur la Figure II.9

Pour les semelles filantes sur sols mous ou lâches, Terzaghi et Peck recommandent d'utiliser $\frac{2}{3}c'$ et $\frac{2}{3}\varphi'$ en lieu et place de c' et φ' , pour tenir compte de la rupture localisée et non généralisée. Les valeurs des courbes en tiretés (N'_c , N'_q , et N'_γ) correspondent à $\frac{2}{3}\varphi'$.

Figure II.9: Valeurs de Nc (ϕ '), $N_{\gamma}(\phi$ ') et Nq(ϕ ') recommandées par Terzaghi et Peck

ф	N_c	N_q	N _γ	ф	N _c	N_q	N_{γ}	ф	N _c	N_q	N_{γ}
0	5.70	1.00	0.00	17	14.60	5.45	2.18	34	52.64	36.50	38.04
1	6.00	1.1	0.01	18	15.12	6.04	2.59	35	57.75	41.44	45.41
2	6.30	1.22	0.04	19	16.57	6.70	3.07	36	63.53	47.16	54.36
- 3	6.62	1.35	0.06	20	17.69	7.44	3.64	37	70.01	53.80	65.27
4	6.97	1.49	0.10	21	18.92	8.26	4.31	38	77.50	61.55	78.61
5	7.34	1.64	0.14	22	20.27	9.19	5.09	39	85.97	70.61	95.03
6	7.73	1.81	0.20	23	21.75	10.23	6.00	40	95.66	81.27	115.31
7	8.15	2.00	0.27	24	23.36	11.40	7.08	41	106.81	93.85	140.51
8	8.60	2.21	0.35	25	25.13	12.72	8.34	42	119.67	108.75	171.99
- 9	9.09	2.44	0.44	26	27.09	14.21	9.84	43	134.58	126.50	211.56
10	9.61	2.69	0.56	27	29.24	15.90	11.60	44	151.95	147.74	261.60
11	10.16	2.98	0.69	28	31.61	17.81	13.70	45	172.28	173.28	325.34
12	10.76	3.29	0.85	29	34.24	19.98	16.18	46	196.22	204.19	407.11
13	11.41	3.63	1.04	30	37.16	22.46	19.13	47	224.55	241.80	512.84
14	12.11	4.02	1.26	31	40.41	25.28	22.65	48	258.28	287.85	650.87
15	12.86	4.45	1.52	32	44.04	28.52	26.87	49	298.71	344.63	831.99
16	13.68	4.92	1.82	33	48.09	32.23	31.94	50	347.50	415.14	1072.80

Figure II.10 : Facteur De La Capacité Portante Suivant Terzaghi
CHAPITRE IIMETHODE DE RESOLUTION ANALYTIQUE

II.4.3.2 Rupture à court terme et à long terme

Le comportement d'un sol fin saturé diffèrent suivant que les excès de pression interstitielle (surpression) provoquée par l'application des charges ont eu ou non le temps de se dissiper.

Il y a donc lieu de se préoccuper du calcul à court terme et à long terme

Le calcul à court terme fait intervenir les contraintes totales et les caractéristiques non drainées du sol (C=

CU et $\varphi = \varphi_u$)

- Le calcul à long terme fait intervenir les contraintes effectives et les caractéristiques drainées du sol (C=C' et φ=φ')
- A court terme

 $q_l = \gamma_{sat} . D + (\pi + 2) . C_u Puisque N\gamma = 0$ et Nq = 1 pour $\varphi = 0$

A long terme

 $q_l = \frac{1}{2} \gamma_1 \cdot \mathbf{B} \cdot N_{\gamma}(\varphi') + \gamma_2 \cdot \mathbf{D} N_q(\varphi') + \mathbf{C}' \cdot N_c(\varphi')$

<u>Remarque</u>: Le dimensionnement à court terme est généralement plus défavorable que celui à long terme.

II.4.3.3 Détermination des coefficients Ny, Nq, Nc, selon A. Caquot et J. Kérisel

Le calcul est réalisé pour une semelle filante à base horizontale encastrée dans un sol homogène et supportant une charge verticale centrée. Le problème étant à deux dimensions, il est possible de considérer une tranche de longueur unité dans le sens perpendiculaire à B.

La formule s'écrit : $q_u = C N_C + q_0 N_q + \frac{1}{2} \gamma_2$.B N_γ

<u>A- Terme de surface Ny</u>

Le coin AMC (zone I de la figure II.10) est supposé faire un angle au sommet M de $\left(\frac{\pi}{2} - \varphi\right)$

Il est en équilibre surabondant et fait corps avec la fondation.

Le poinçonnement de la fondation dans le milieu pulvérulent se produit lorsque la butée sur les écrans fictifs AM et CM est entièrement mobilisée.

La résultante de la butée sur CM s'écrit : $R = 0,5.\gamma_2.B.C2.Kp$

S'agissant d'un frottement sol contre sol, le contact est parfaitement rugueux le long de AM et

CM et l'angle de frottement φ sur CM est égal à (- φ). Par suite, la résultante est inclinée de

 $(-\phi)$ sur la normale à l'écran et la valeur de Kp est obtenue à partir des tables de butée de

Caquot et Kérisel (1953) pour $\beta=0, \delta=-\phi$ et $\lambda=-\left(\frac{\pi}{4}-\frac{\phi}{2}\right)$ l'ensemble des forces verticales est en équilibre.

Ces forces sont:

• La capacité portante de la fondation par unité de longueur Qy=qy.B

CHAPITRE IIMETHODE DE RESOLUTION ANALYTIQUE

• Le poids W du coin ACM, $W = \gamma_2 \left(\frac{B^2}{4}\right) \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$

La figure (II.10) montre que la résultante Rp fait avec la verticale d'un angle de $\left(\frac{\pi}{4} - \frac{\varphi}{2}\right)$ et que

Soit en remplaçant W, R et CM par leurs valeurs :

Figure II.11 : Détermination du terme de surface. (Philipponat G. Hubert B)

La comparaison avec le terme de surface de la formule générale conduit à la formule suivante:

$$N_{\gamma} = \frac{1}{2} \left[K_{p} \cdot \frac{\cos\left(\frac{\pi}{4} - \frac{\varphi}{2}\right)}{\cos^{2}\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)} - \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \right]$$

<u>B- Terme de profondeur Nq</u>

Dans ce cas, on calcule la capacité portante de la semelle qu encastrée d'une profondeur D. La surcharge uniformément répartie p de part et d'autre de la semelle AB est égale à $P = \gamma 1.D$ (figure II.11).

CHAPITRE IIMETHODE DE RESOLUTION ANALYTIQUE

Figure II.12 : Détermination du terme de profondeur.

Comme dans le cas d'actions du sol sur un écran, on a deux équilibres de Rankine séparé par un équilibre général en spirale logarithmique (**figure II.12**).

Le calcul donne l'expression suivante de q.

 $q_u = \operatorname{Pt} g^2 \left(\frac{\pi}{4} + \frac{\varphi}{2} \right) e^{\pi t g \varphi}$

Avec P= $\gamma 1.D$ $q_u = \gamma 1.D tg^2 \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) e^{\pi t g \varphi}$

Avec $\gamma 1$: poids volumique du sol au-dessus de la semelle. En posant $q_u = q_q$ (contrainte ultime de profondeur)

 $q_q = \gamma_1 . D. N_q$

On appellera Nq : terme de profondeur $N_q = tg^2(\frac{\pi}{4} + \frac{\varphi}{2})e^{\pi tg\varphi}$

Avec ϕ : angle de frottement du sol au-dessous de la semelle.

C- Terme de cohésion Nc

On applique le théorème des états correspondants de CAQUOT. On est ramené au problème précédent en remplaçant $\gamma 1$. D par H=C/tg ϕ (figure II.12).

Figure II.13 : Détermination du Terme de Cohésion Nc

Master II Géotechnique

 $q_{u} = \left[tg^{2} \left(\frac{n}{4} + \frac{\varphi}{2} \right) e^{n \cdot tg\varphi} - 1 \right]$ En posant $q_{u} = q_{c}$ (contrainte ultime de cohésion) $q_{c} = C.N_{c} \operatorname{Avec} N_{c} = \frac{N_{q} - 1}{tg\varphi}$

Pour un sol fin saturé cisaillé à court terme $\phi_u = 0$ et $Cu \neq 0$; on fait tendre $\phi \rightarrow 0$ et on obtient :

 $N_c = p + 2$

(Terzaghi pour une semelle rugueuse a montré Nc = 5,7).

Cette formule donne la capacité portante d'une semelle sans encastrement fondée sur un sol fin saturé sous un chargement rapide (phase de chantier, court terme).

On peut étendre cette approche à la construction des remblais sur sol fin saturé en assimilant le remblai à une fondation superficielle.

CHAPITRE III

METHODE DE RESOLUTION NUMERIQUE

III.1<u>APPROCHE NUMERIQUE BASE SUR LA METHODE DES ELEMENTS FINIS (MEF)</u> III.1.1 INTRODUCTION

La méthode des éléments finis fait partie des outils de mathématiques largement appliquées. Il s'agit de mettre en place, à l'aide des principes hérités de la formulation Variation elle ou formulation faible, un algorithme discret mathématique permettant de rechercher une solution approchée d'une équation aux dérivées partielles (ou EDP).

Les différentes applications de la méthode des éléments finis MEF, aux problèmes structuraux et non structuraux, font l'objet de travaux extensifs de recherche et de développement dans le domaine de génie civil. En effet, construite de plus en plus en site urbaine pour des raisons économiques et fonctionnelles, l'utilisation de la MEF pour le calcul et dimensionnement des tunnels à faible profondeur, présente un intérêt pratique considérable pour ces ouvrages d'arts, compte tenu des possibilités qu'offre cette méthode à simuler si remarquablement aussi bien le caractère hétérogène des massifs traversés par d'excavations, que les différentes variantes de conditions aux limites et de chargement prendre en considération.

III.1.2 HISTORIQUE DE LA MEF

LA MEF consiste à remplacer la structure physique &étudier par un nombre finis d'éléments ou de composants discrets qui représentent un maillage Ces éléments sont les entre eux par un nombre de points appelés nœuds. On considère d'abord le composante de chaque partie indépendante, puis on assemble ces parties de telle sorte qu'on l'équilibre des forces et compatibilité des déplacements réels de la structure en tant qu'objet continu.

La MEF est extrêmement puissante puisqu'elle permet d'étudier des structures continues ayant des propriétés géométriques et des conditions de charges compliquées Elle nécessite un grand nombre de calculs qui, cause de leur nature répétitive, s'adaptent parfaitement a programmation numérique.

III.1.3<u>LE PRINCIPE DE LA METHODE</u>

La méthode des éléments finis permet donc de résoudre de manière discrète une EDP dent on cherche une solution approchée suffisamment fiable. De manière générale, cette EDP porte sur une fonction u, définie sur un domaine, Elle comporte des conditions aux bords permettant d'assurer l'existence et l'unicité d'une solution sauf cas

particuliers, la discrétisation passe par une redéfinition et une approximation de la géométrie. On considère donc le problème pose sur la géométrique approchée par un domaine polygonal ou polyédrique par morceaux. Une fois la

Géométrique approchée, il faut choisir un espace d'approximation de la solution du problème. Dans la MEF, cet espace est défini a l'aide du maillage du domaine (ce qui explique aussi pourquoi il est nécessaire d'approcher la géométrie). Le maillage du domaine permet d'en définir un pavage dont les pavés sont les éléments finis. Un élément fini est la donnée d'une cellule élémentaire et de fonctions de base de l'espace d'approximation. Ces fonctions sont définies de manière être interpolées bien qu'il existe de nombreux logiciels exploitant cette méthode et permettant de à résoudre des problèmes dans divers domaines, il est important que l'utilisateur ait une bonne idée de ce qu'il fait, notamment quant au choix du maillage et du type d'éléments qui doivent être adaptés au problème posé aucun logiciel ne fera tout pour l'utilisateur et il faut toujours garder un cil critique vis-à-vis de solutions approchées. Pour cela il existe des indicateurs d'erreur +et des estimateurs d'erreur qui permettent d'ajuster les différents paramètres.

La solution trouvée, il reste cependant adéterminer les caractéristiques de la méthode ainsi développée, notamment l'unicité de l'éventuelle solution ou encore la stabilité numériquedu schéma de résolution. Il est essentiel de trouver une estimation juste de l'erreur lice à la discrétisation et montrer que la méthode ainsi écrite converge, c'est-d-dire que l'erreur tendv ers 0 si la finesse du maillage tend elle aussi vers 0.

Dans le cas d'une EDP linéaire avec opérateur symétriques, il s'agit finalement de résoudre une équation algébrique linéaire, inversible dans le meilleur des cas.

> Les principes fondamentaux de la méthode la plus courante sont les suivants :

- le milieu est considéré bidimensionnel
- le milieu contenu est divisé par des lignes imaginaires, qui constituent les frontières entre éléments finis
- Ceséléments sont supposés être reliés entre eux par un nombre fini de points dit points nodaux situés sur leur frontières (ce sont généralement les sommets des éléments et parfois d'autres points sur les faces et les arêtes). Ces points nodaux transmettent les efforts d'un élément à un autre. Les inconnues de base du problème sont les déplacements de ces points nodaux

- Une fonction de forme permet de définir d'une manière unique le champ des déplacements à l'intérieur de chaque élément fini en fonction des déplacements de ces points nodaux
- Les fonctions de déplacements définissent donc sans ambiguïté l'état de déformation à l'intérieur d'un élément en fonction de déplacements nodaux, et par suite, compte tenu des propriétés théologiques du matériau, l'état de contrainte (état de contrainte de l'élément est défini en un ou plusieurs points de l'élément appelés des«Points d'intégration>>
- A partir de ces fonction de déplacements et des lois rhéologiques adoptées, on détermine une relation de raideur qui a tout champ de déplacement sur le solide (défini par les composantes du vecteur déplacement (U) au niveau des nœuds de la structure ouSolide) fait correspondre un champ de sollicitation défini par les composantes du vecteur force {F} au niveau des nœud. Cette relation s'écrit :

$$(F) = [K'] (U)$$

Ou :

[K] matrice carrée de la rigidité qui, une fois déterminée permet de résoudre le système linéaire (F)-[K] {U) ou les inconnues sont les composantes de {U} des déplacements nodaux (si l'une des composantes est imposée par les conditions aux limites, elle sera remplacée par la réaction qui en résulte).

Tout chargement se traduit par des vecteurs de forces nodales (F) lorsqu'il s'agit d'incréments de charges, les déplacements sont des incréments qui s'ajoutant aux déplacements obtenus lors de l'incrément précédent, il en est de même pour les contraintes.

III.1.4 LE PRINCIPE DES TRAVAUX VIRTUELS

 $W = \int (\delta)^{t}(H)(\varepsilon) d\nu + \int (\delta u)^{t} (f_{x}) ds + \int (\delta u)^{t} (f_{v}) d\nu = 0$

Pour résoudre un problème par la méthode des éléments finis, il existe deux modèles :

Model force= force inconnue

Model déplacements = déplacement inconnues c'est le model le plus utilisés, on peut voir cette étape par la suite :

METHODE DE RESOLUSION NUMERIQUE

- <u>Etape 1</u>: le remplacement de la géométrie réelle (initiale) de domaine de volume V pat ensemble de sous domaines (prédéfini) à condition de recouvre mieux In géométrie initial de sort, pas de faille, pas de recouvrement (défaut de maillage).
- <u>Etape 2</u> : la présentation de la géométrie dans chaque sous domaine

$$\{X_{x,y,z}\} = (N).(X_i)$$

Ou :

 $X_{x,y,z}$: La position réelle de domaine initial de volume V.

X, y et z : pour la détermination de la direction de déplacement selon les axes.

(N): fonction d'interpolation (fonction de forme)

X_i: Position de volume Ve de chaque élément.

1) *Etape 3* : le remplacement de déplacement réel par le déplacement de chaque élément

 $\{U\}{=}(\mathbb{N}).~(U_t)$

Ou :

- $\{U\}$: Déplacement réel
- (N) : fonction de forme

 (U_t) :Déplacement de l'élément

III.1.5 FONCTION DE BASE

La M.E.F consiste à restreindre la connaissance de déplacement U, V et W en chaque point du volume à seulement la connaissance de ces valeur en nœuds en suite a interpole entre ce point pour avoir le déplacement en tout point la méthode la plus simple est l'emploi des polynômes de Lagrange. Dans cette méthode, Les fonctions de base valent 1 i un nœud et à tous les autres. La fonction de forme Nest alors la fonction valant 1 au nœud et 0 sur les autres nœuds et elle est polynomiale sur chaque élément.

On appelle élément. In donnée d'une géométrie (souvent polygonale en 2D. polyédrique en3D) et des fonctions de base associées à cette géométrie c'est - 1 - dire pour minimiser l'erreur on doit augmenter le degré de liberté DDL en chaque noud ou bien augmenter le nombre de noud

CHAPITRE III

METHODE DE RESOLUSION NUMERIQUE

D'autres solutions peuvent exister pour les fonctions de forme. On cite ici un seul exemple des éléments finis d'Hermite qui ont la particularité d'avoir deux fonctions de base associées e chaque nœud Dans cette version, la valeur de la solution est ajustée avec la que la deuxième permet d'ajuster la valeur de la dérivée. Ce type de fonctions de base peut avoir un intérêt pour la résolution de certaines équations aux dérivées partielles (par exemple l'équation des plaques en mécanique des milieux continus), même si elle nécessite d'avoir deux fois plus de fonctions pour un maillage donné.

Figure III.1 : Le principe des éléments finis.

III.1.6<u>CHOIX DU MAILLAGE</u>

La méthode des éléments finis repose sur un découpage de l'espace selon un maillage, d'habitudel'on choisit un maillage carré ou triangulaire mais rien n'interdit de choisir des maillages plus complexes. Il n'est pas non plus nécessaire que le maillage soit régulier et l'on a tendance à resserrer le maillage près des endroits d'intérêt (par exemple aux endroits où l'on pense que la solution va beaucoup varier). Cependant, il faut veiller à avoir des éléments faiblement distordus (se rapprocher d'un polygone régulier). Plus ce maillage n'est resserré, plus la solution que l'on obtient par la méthode des éléments finis sera précise et proche de la « vraie » solution de l'équation aux dérivés partielles.

Dans le cas de notre étude ont utilisé le logiciel Plaxis qui s'articule sur deux types d'éléments, toute deux triangulaire à 6 nœud et 15 nœuds un élément triangulaire.

L'élément à 15 nœud est celui qu'ont adopté pour notre étude, et ce, pour sa haute performance.

Figure III.2 Génération du maillage

III.1.7 MODELISATION DE SYSTEME EN ELEMENT FINI (MEF)

La variation du module de Young avec la profondeur est relativement facile à prendre en compte avec la méthode des éléments finis. Il suffit en pratique de découper le sol en couches horizontales de modules constants et d'épaisseurs différents.

III.1.8 APPLICATION AUX CALCULS DES OUVRAGES SOUTERRAINS

La détermination des sollicitations auxquelles sont soumis les ouvrages enterrées telles que les conduites est un problème d'hyperstatique, dont les paramètres suivants peuvent être prise en compte par la MEF à savoir :

1) La bi-dimensionnalité du problème (état plan de contrainte ou de déformation)

- 2) Etat d'équilibre naturel du milieu ou état plan de contrainte ou de déformation
- 3) Géométrie de système sol-structure

4) Propriétés de déformation du terminé, son hétérogénéité éventuelle et son comportement non linéaire

5) Caractéristique géométrique mécanique et physique de la structure ainsi que la nature du contacte solstructure.

6) Les techniques de réalisation de solide sol-structure

7) L'historique des phases de construction et d'exécution des travaux

8) L'évolution dans le temps des pressions exercées par le terrain sur la structure.

III.1.9 PROGRAMMES GENERAUX

Les équations qui réagissent la MEF sont sous une forme assez générale pour qu'il soit possible d'écrire un code de calcul unique capable de résoudre tous les problèmes de mécanique de structures et autres.

Les programmes qui visent cet objectif, même à une échelle réduite sont appelés programmes généraux.

Ils sont subdivisés en quatre phases, sous forme d'organigrammes, ces quatre phases sont présentées quasiment dans tous les programmes d'analyse par M.E.F.

III.1.10FONCTION D'INTERPOLATION POUR LES ELEMENTS TRIANGULAIRES

Pour les éléments triangulaires, il y a deux coordonnées locales ($\xi \ et \eta$).

Dans l'addition nous employons la cordonnée auxiliaire (=1-6-7. Pour les triangles nœuds, les fonctions de

Forme peuvent être écrites comme suit :

$$\begin{split} N_1 &= \varepsilon (4\varepsilon - 1) (4\varepsilon - 2) (4\varepsilon - 3)/6 \\ N_2 &= \xi (4\xi - 1) (4\xi - 2) (4\xi - 3) /6 \\ N_3 &= \eta (4\eta - 1) (4\eta - 2) (4\eta - 3) /6 \\ N_4 &= 4\varepsilon\xi (4\varepsilon - 1) (4\eta - 1) \\ N_5 &= 4\xi\eta (4\xi - 1) (4\xi - 1) \\ N_6 &= 4\varepsilon\eta (4\eta - 1) (4\varepsilon - 1) \\ N_7 &= \varepsilon \xi (4\varepsilon - 1) (4\varepsilon - 2) *8/3 \\ N_8 &= \varepsilon \xi (4\xi - 1) (4\xi - 2) *8/3 \\ N_9 &= 4\eta\varepsilon (4\xi - 1) (4\xi - 2) *8/3 \\ N_{10} &= \xi\eta (4\eta - 1) (4\eta - 2) *8/3 \\ N_{11} &= \varepsilon \eta (4\eta - 1) (4\eta - 2) *8/3 \\ N_{12} &= \varepsilon \eta (4\varepsilon - 1) (4\varepsilon - 2) *8/3 \\ N_{13} &= 32 \eta\varepsilon\xi (4\varepsilon\eta - 1) \\ N_{15} &= 32 \eta\varepsilon\xi (4\eta - 1) \end{split}$$

III.1.11INTEGRATION NUMERIQUE DES ELEMENTS LINEAIRES

Afin d'obtenir l'intégrale au-dessus d'une certaine ligne ou secteur l'intégrale est numériquement estimée comme :

$$\int F(\xi)d\xi = \sum F(\xi)Wi(4.5)$$

Ou :F (ξ) est la valeur de fonction F de forme au point ξ *et Wi* et représente le facteur depoids pour le point i, un nombre total k de point d'intégration sont considérés.

Deux méthodes sont fréquemment employées par le logiciel Plaxis, à savoir :

• La méthode d'intégration de Newton-cotes, ou les points sont choisis aux nœuds

• La méthode d'intégration de gauss qui considère cinq points d'intégration à

L'intérieure de l'élément triangulaire ce qui permet une meilleure précision et une exactitude élevée.

Les facteurs de position et de poids pour les deux types d'intégration sont donnés par les tableaux

Nombre des nœuds	ξ_i	W _i
1	±1	1
2	± 1.0	1/3, 4/3
3	$\pm 1,\pm 1/3$	1/4, 3⁄4
4	$\pm 1,\pm 1/2,0$	7/45,32/45,12/45

Tableau*III.1*: La méthode d'intégration de Newton-cotes

Nombre des points	ξ_i	W _i
1	0.0000	2
2	± 0.577350 ($\pm \sqrt{3}$)	1
3	± 0.774596 ($\pm \sqrt{0.6}$)	0.55555
	0.00000	0.88888
4	±0.861136	0.347854
	±0.339981	0.652145
5	±0.906179	0.236956
	±0.538469	0.478628
	0.000000	0.56888

Tableau :III.2La méthode d'intégration de gauss

L'intégration de newton-cotes peut intégrer exactement des fonctions de polynomial d'un ordre au-dessous du nombre de points considérés. En en ce qui concerne, l'intégration de gauss, la fonction polynomial de degré 2k-1, peut être intégrée exactement en supposant k points.

III.1.12INTEGRATION NUMERIQUE DES ELEMENTS TRIANGULAIRES

Comme pour les éléments linéaires l'intégration pour élément triangulaire est donnée par :

$$\iint F(\xi,\eta)d\xi d\eta = \sum_{i}^{k} (\xi i,\eta i)Wi$$

Plaxis utilise l'intégration gaussienne pour les éléments triangulaires en ce qui concerne l'élément triangulaire à 15 nœuds, il comporte 12 point d'intégration (tableau) afin de calculer les composants cartésiens des déformation a partir déplacements, tels que formulé dans l'équation ($\varepsilon =$ LNv=Bv), sachant que ces dérivés doivent être considérés dans le système globale des axes (x,y,z)

$$\varsigma = B_I v_i$$

Ou :

- L : opérateur différentiel
- N : fonction de forme
- v : valeur nodale du déplacement
- B : matrice d'interpolation des déformations

$$B_{i} = \begin{pmatrix} \frac{\partial N_{i}}{\partial x} & O & O \\ 0 & \frac{\partial N_{i}}{\partial y} & 0 \\ 0 & 0 & \frac{\partial N_{i}}{\partial z} \\ \frac{\partial N_{i}}{\partial y} \frac{\partial N_{i}}{\partial x} & 0 \\ 0 & \frac{\partial N_{i}}{\partial z} \frac{\partial N_{i}}{\partial y} \\ \frac{\partial N_{i}}{\partial z} & 0 & \frac{\partial N_{i}}{\partial x} \end{pmatrix}$$

Dans les éléments, les dérivées sont calculés dans le système de coordonnées locales (ξ , ζ , η) La relation entre les dérivées locales et globales introduit le jacobin :

$$\begin{pmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \\ \frac{\partial N_i}{\partial \xi} \end{pmatrix} = \frac{\frac{\partial x \partial y \partial z \partial N_i}{\partial \xi \partial \xi \partial \xi \partial \xi}}{\frac{\partial x \partial y \partial z \partial N_i}{\partial \eta \partial \eta \partial \eta \partial \eta} = J} \begin{pmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \xi} \end{pmatrix}$$

Ou inversement

$$\begin{pmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \\ \frac{\partial N_i}{\partial x} \end{pmatrix} = J^{-1} \begin{pmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \\ \frac{\partial N_i}{\partial \xi} \end{pmatrix}$$

METHODE DE RESOLUSION NUMERIQUE

Les dérivés locales $\frac{\partial N_i}{\partial \xi}$ etc. peuvent facilement être dérivés des fonctions de forme de l'élément, puisque les fonctions de forme sont formulées dans des coordonnées locales. Les composants du Jacobin sont obtenus à partir des différences dans des coordonnées nodales.

L'inverse du Jacobin j^{-1} est obtenu en inversant numériquement les composantes cartésiennes des déformations peuvent être calculées par sommation detoutes les contributions nodales.

$$\begin{pmatrix} \boldsymbol{\varepsilon}_{XX} \\ \boldsymbol{\varepsilon}_{yy} \\ \boldsymbol{\varepsilon}_{ZZ} \\ \boldsymbol{\gamma}_{Xy} \\ \boldsymbol{\gamma}_{yz} \end{pmatrix} = \sum B_i \begin{pmatrix} \boldsymbol{\nu}_{x,i} \\ \boldsymbol{\nu}_{y,i} \\ \boldsymbol{\nu}_{z,i} \end{pmatrix}$$

Ou :

Vi:sont les composants des déplacements dans lei^{éme} nœud.

Pour une analyse en état plan de déformation, la composante de la déformation dans la direction de l'axe Z est nulle, c'est-à-dire :

$$\varepsilon_{zz} = \gamma_{yz} = \gamma_{zx} = 0.$$

Pour une analyse axisymétrique, les conditions suivantes s'appliquent :

 $\varepsilon_{zz} = u_{x/r}$ et $\gamma_{yz} = \gamma_{zx} = 0$ (r = rayon).

III.1.13 CALCUL DE MATRICE DE RIGIDITE D'ELEMENT

La matrice de rigidité élémentaire K* calculée par intégration :

$$k^{e} = \int B^{t} D^{e} B dv$$

L'intégrale est estimée par l'intégration numérique comme décrite dans la section 5.5.3. En Fait, la matrice de rigidité d'élément se compose de sous matrices K_i ou : i et j sont les nœuds locaux.

*III.2***PRESENTATION DU CODE DE CALCUL PLAXIS**

III.2.1 PRESENTATION DE PLAXIS

L'analyse de projets géotechniques est possible grâce à de nombreux codes éléments finis.

L'ingénieur ayant de l'expérience en ce domaine sait que le poids des hypothèses permettent le passage de la réalité au modèle est difficile à évaluer. Il sait que le jargon éléments finis est parfois rebutant-il souhaiterait ne pas avoir à intervenir sur la numérotation des nœuds, des éléments, sur ec trains choix réservés au numéricien.

III.2.2. DESCRIPTION DE CODE DE CALCUL PLAXIS

Le code de calcul par éléments finis PLAXIS a été développé en premier lieu à l'Université Technologique de Delft (TUD) en 1987. Dans les années suivantes, ce code, initialement réalisé pour analyser les digues en sols mous (argileux), a vu un champ d'application se développer largement afin de pouvoir traiter différents types de problèmes géotechniques. Il permet d'analyser des problèmes élastiques, élastoplastique, élasto-visco plastiques en 2DOu 3D.

L'élément fini PLAXIS représente certainement un optimum actuel sur les plans scientifiques et pratique en l'analyse pseudo-statique 2D. Scientifiquement, c'est un outil d'analyse non linéaire en élasto-plasticité non standard (5 paramètres), avec prise en compte des pressions interstitielles (et même consolidation linéaire), doté de méthodes de résolution et d'algorithmes robustes, éprouvés, ainsi que de procédures de choix automatique évitant des choix délicats à l'opérateur peu averti. Bien que très fiable sur le plan numérique, le code fait appel à des éléments de haute précision (triangle à 15 nœuds). Du point de vue pratique, le système, de menus arborescents à l'écran rend l'utilisation souple et agréable, car l'opérateur ne s'encombre pas l'esprit outre mesure. Le recours aux manuels devenant rare, ceux-ci sont de volume réduit, faciles à consulter. L'ensemble des options par défaut (conditions aux limites) rend la mise en données aisée et rapide. Enfin, les options simplifiées (initialisation des contraintes, pressions interstitielles) permettent d'aller droit au but (prévoir le comportement d'un ouvrage), quitte à réaliser ultérieurement, avec le même code et les mêmes données, un calcul affiné.

III.2.3 <u>LES POINTS FORTS DE PLAXIS</u>

La convivialité de l'interface pour la saisie des données et pour l'interprétation des résultats.

- Générateur automatique de maillage.
- Jeu complet de lois de comportement de sol et la possibilité de définir ses propres lois de comportement.
- > Couplage avec les calculs d'écoulement et de consolidation.
- Prise en compte des éléments de structure et de l'interaction sol-structure.

III.2.4. LES LOIS DE COMPORTEMENTS UTILISER DANS PLAXIS

III.2.4.1 INTRODUCTION

Les modèles de comportement de sols sont très nombreux : depuis le modèle élastique plastiqué de Mohr-Coulomb jusqu'aux lois de comportement les plus sophistiquées permettant de décrire presque tous les aspects du comportement élasto-visco-plastique des sols, aussi bien sous sollicitation monotone que cyclique. Ces modèles ont été développés dans le but d'être intégrés dans des calculs par éléments finis. Dans ce schéma, la modélisation par élément finis permet de résoudre le problème aux limites en tenant compte, par une loi de comportement réaliste, du comportement réel du sol. Deux difficultés majeures ont empêché la réalisation complète de ce schéma : d'une part les lois de comportement qui décrivent bien le comportement des sols sont complexes et demande, pour la détermination des paramètres qu'elles contiennent.

Des études spécifiques lourdes sortant du cadre des projets d'ingénierie même complexe.

La validation des lois de comportement a fait l'objet, dans les années 80 de plusieurs ateliers pour comparer les réponses des différents modèles sur différents chemins de sollicitation. La seconde difficulté a été l'intégration de ces lois de comportement dans des codes par éléments finis, bi ou tridimensionnels. Peu de codes sont opérationnels actuellement, avec des lois sophistiquées. Le coût de ces calculs est généralement important.

La démarche suivie dans le développement du code PLAXIS est différente. Un des objectifs de PLAXIS est de fournir à l'utilisateur un code d'éléments finis qui soit à la fois robuste et convivial, permettant de traiter des problèmes géotechniques réels, dans un délai raisonnable en utilisant des modèles de comportement de sols dont les paramètres puissent être déterminés à partir d'une étude géotechnique normale. En ce sens, PLAXIS peut apparaître comme une règle calcul de l'ingénieur géotechnicien, ou le microordinateur a remplacé la règle. C'est pourquoi les différents modèles de comportement utilisés dans PLAXIS sont des modèles qui peuvent apparaître simple, voire simplistes, mais qui sont efficients quand ils sont utilisés dans des cas adaptés.

III.2.4.2<u>COMPORTEMENT ELASTO-PLASTIQUE</u>

CHAPITRE III

METHODE DE RESOLUSION NUMERIQUE

Le comportement élastoplastique peut être représenté par un modèle monodimensionnel, en série un ressort de raideur K, pour symboliser l'élasticité du matériau, à un patin de seuil S0(**Figure 3.1**).

Figure III.4: Modèle monodimensionnel du comportement élastoplastique

Figure III.5: comportement élastique-parfaitement plastique.

Lors d'une décharge, le comportement est élastique et réversible, la longueur de ladéformation plastique est a priori indéterminée.

Figure III.6: Représentation du comportement élasto-plastique avec écrouissage.

III.2.4.3 MODELE ELASTIQUE LINEAIRE

Le modèle élastique linéaire utilisé dans PLAXIS est classique. Les tableaux de rentrée des données demandent le module de cisaillement G et le coefficient de Poisson v. l'avantage de G est d'être indépendant des conditions de drainage du matériau (Gu= G'), ce qui n'est pas le cas des modules d'Young : le module d'Young non drainé est supérieur au module d'Young drainé.

Il aurait pu sembler logique, si G est utilisé comme paramètre élastique, d'utiliser K comme second paramètre. D'une part Ku est infini (correspondant à vu= 0.5) et il est moins courant d'emploi. G est en fait le module mesuré dans les essais pressiométriques.

La relation entre le module d'Young E est les autres modules sont données par les équations :

$$G = \frac{E}{2(1+V)} K = \frac{E}{3(1+V)} E_{oed} = \frac{(1-v)E}{(1-2V)(1+V)}$$

Le modèle élastique linéaire de PLAXIS peut être employé surtout pour modéliser les éléments de structures béton ou métal en interaction avec le sol. Il peut aussi être intéressant pour certains problèmes de mécanique des roches.

CHAPITRE III

III.2.4.4<u>MODELE DE MOHR-COULOMB</u>

Le modèle de Mohr-Coulomb est un modèle souvent utilisé pour représenter la rupture par cisaillement dans les sols et les roches tendres. Cette loi se caractérise par une élasticité linéaire isotrope de Hooke, une surface de charge et un potentiel plastique. Les règles d'écoulement sont non associées. La fonction de charge est confondue avec le critère de rupture. A l'intérieur de la surface de rupture, le comportement du matériau est supposé élastique linéaire isotrope ou anisotrope. Sur la surface de rupture, le comportement est considéré comme parfaitement plastique. Dans l'espace des contraintes principales (σ 1, σ 2, σ 3), la surface de rupture est une pyramide de section hexagonale d'équation

 $F(\sigma ij) = |\sigma 1 - \sigma 3| - (\sigma 1 - \sigma 3) \sin \varphi - 2 c \cos \varphi = 0 (3-6)$

Où σ 1 et σ 3 représentent les contraintes extrêmes (σ 1 $\geq \sigma$ 2 $\geq \sigma$ 3). Cette pyramide est centrée autour de la trisectrice de l'espace des contraintes principales (1er invariant des contraintes) Comme illustré :

Figure III.7: Pyramide de Mohr-Coulomb tracée pour C=0.

III.2.4.5. <u>LE MODULE DE YOUNG</u>

Le choix d'un module de déformation est l'un des problèmes les plus difficiles en géotechnique, le module de déformation varie en fonction de la déformation et en fonction de la contrainte moyenne. Dans le modèle de Mohr-Coulomb, le module est constant. Ilparaît peu réaliste de considérer un module tangent à l'origine (ce qui correspondait au Gmax mesuré dans des essais dynamiques ou en très faibles déformations). Ce module nécessite des essais spéciaux.

III.2.4.6 <u>LE COEFFICIENT DE POISSON</u>

On conseille une valeur de 0,2 à 0,4 pour le coefficient de Poisson. Celle-ci est réaliste pour l'application du poids propre (procédure K0 ou chargement gravitaires). Pour certains problèmes, notamment en décharge, on peut utiliser des valeurs plus faibles. Pour des sols incompressibles, le coefficient de Poisson s'approche de 0,5 sans que cette valeur soit utilisable.

III.2.4.7 L'ANGLE DE FROTTEMENT φ

Plaxis ne prend pas en compte une variation d'angle de frottement avec la contrainte moyenne. L'angle de frottement à introduire est soit l'angle de frottement de pic soit l'angle de frottement de palier. On attire l'attention sur le fait que des angles de frottement supérieursÀ 35° peuvent considérablement allonger les temps de calcul.

Il peut être avisé de commencer des calculs avec des valeurs raisonnables d'angle de frottement, quitte à les augmenter dans la suite. Cette valeur de 35° est compatible avec les angles de frottement ϕ cv (à volume constant, au palier).

On peut déterminer l'angle de frottement à partir de la courbe intrinsèque du modèle de Mohr -Coulomb.

III.2.4.8LA COHESION

Il peut être utile d'attribuer, même à des matériaux purement flottants, une très faible cohésion (0,2 a 1 kPa)pour des questions numériques. Pour les analyses en non drainé avec $\phi u = 0$, Plaxis offre l'option de faire varier la cohésion non drainée avec la profondeur : ceci correspond à la croissance linéaire de la cohésion en fonction de la profondeur observée dans des profils au scissomètre ou en résistance de pointe de pénétromètre.

Cette option est réalisée avec le paramètre c-dépôt. Une valeur nulle donne une cohésion constante. Les unités doivent être homogènes avec ce qui a été choisi dans les problèmes (Typiquement en kPa/m).

III.2.4.9 ANGLE DE DILATANCE

Le dernier paramètre est l'angle de dilatance noté ψ ; c'est le paramètre le moins courant. Il peut cependant être facilement évalué par la règle (grossière) suivante :

 $\Psi = \varphi - 30^{\circ} \text{ pour } \varphi > 30^{\circ}$ $\psi = 0^{\circ} \text{ pour } \varphi < 30^{\circ}$

Le cas où $\psi < 0^\circ$ correspond à des sables très lâches (état souvent dit métastable, ou liquéfaction statique). La valeur $\psi = 0^\circ$ correspond à un matériau élastique parfaitement plastique, ou il n'y a pas de dilatance lorsque le matériau atteint la plasticité.

C'est souvent le cas pour les argiles ou pour les sables de densité faibles ou moyenne sous contraintes assez fortes.

III.2.4.10<u>CONCLUSION</u>

Pour le calcul de la stabilité des fondations, trois classes de méthodes ont été jusque-là les plus utilisées : les méthodes basées sur l'addition des trois termes de portante (N_c, N_q, N_γ) proposées par Terzaghi et qui laisse un libre choix pour les coefficients de portance, les méthodes de calcul partant des essais en place au pressiométre, et la méthode des éléments finis. La première classe de méthode de calcul représentant les méthodes classiques (équilibre limite et analyse limite) supposent que l'instabilité ne dépend pas de l'état initial du sol et de sa réponse aux faibles valeurs des charges, alors que dans les calcul en déplacements, la rupture est au contraire définie sur la courbe (les courbes) de variation des déplacements en fonction de la charge et/ou du temps.

CHAPITRE IV

ETUDE PARAMETRIQUE

IV.1 INTRODUCTION

Les travaux de recherches menés dans le cadre de ce mémoire, concernent l'étude paramétrique du comportement d'une semelle filante reposant sur deux couches granulaires (sable et argile) .L'étude portera sur la détermination de la capacité portante (q_{ult}) de cette semelle en tenant compte de la variation des caractéristiques mécaniques des deux couches.

IV.2 Etudes paramétriques

Ce travail doit être effectue se basant sur l'influence de la nature de sol de fondation sur la capacité portante d'une semelle filante, il met en évidence une étude paramétrique qui consiste les objectifs que nous nous sommes fixés pour cette recherche. En effet, il s'agit de mettre en évidence l'influence de sol (Argileux et sableux) ainsi que l'influence des effets à court et à long terme.

A. <u>CALCUL DE LA CAPACITE PORTANTE D'UNE SEMELLE FILANTE SOUS</u> <u>CHARGE VERTICALE.</u>

On désire fonder une semelle carrée (L=10m et B=10m) sur un sol constitué tantôt sur une épaisseur de sable et tantôt sur une couche d'argile.

La fondation supporte une charge verticale centrée d'intensité Q=350 KN/ml (de plus de leur poids propres et le poids des terres).

Détermination de la capacité portante ultime de la semelle :

1. Selon la méthode analytique

12m

2. Selon la méthode d'équilibre limite

charge	
semelle filante 2.5 m	
ARGILE NON DRAINEE (Mohr Coulomb	
et SABLE (mohr coulomb)	

10 m

Figure IV.1 : Présentation du cas étudié

IV.3 LA METHODE ANALYTIQUE

Dans notre cas la capacité portante de la semelle filante, soumise à une charge verticale centrée donnée par l'équation : $Q_L = \frac{1}{2}\gamma_1 BN_\gamma(\varphi) + (q + (\gamma_2 D))N_q(\varphi) + CN_C(\varphi)$

Avec :

 q_u = charge ultime par unité d'aire fondation ; γ = poids volumique du sol sous la fondation ; Q = la charge appliquée sur la fondation ; D_f = profondeur de la fondation, B = largeur de la fondation ; φ = L'angle de frottement ;

 N_c , N_γ , N_q = facteurs de capacité portante fonctions de l'angle de frottement. ;

4 <u>Argile raide</u>

Les Données :

Sol	angle de frottement	Poids volumique	N _c	N _Y	N _q
Argile raide	25°	16	25.1	8.34	12.7

1. A long terme :

$$Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma}(\varphi) + ((\gamma_{2} D)) N_{q}(\varphi) + C N_{C}(\varphi)$$

$$Q_{L} = 738.8 (kN/m^{2})$$

2. A court terme :

 $Q_{\text{Limite}} = (\pi + 2)Cu$

$$Q_{\text{Limite}} = 257(\text{kN}/m^2)$$

↓ <u>Argilemolle</u>

Les Données :

Sol	angle de frottement	Poids volumique	N _c	N _Y	N _q
Argile molle	24°	15	23.36	7.08	11.4

1. A long terme :

$$Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma}(\varphi) + ((\gamma_{2} D)) N_{q}(\varphi) + C N_{C}(\varphi)$$

$$Q_{\rm L} = 650,48 \, ({\rm kN}/m^2)$$

2. A court terme

 $Q_{\text{Limite}} = (\pi + 2)Cu$

QLimite = $205,6(kN/m^2)$

↓ Sable Raide

Les Données :

Sol	angle de frottement	Poids volumique	N _C	N _Y	N_q
Sable raide	33°	17	48.09	31.94	32.23

1. A long terme

$$Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma}(\varphi) + ((\gamma_{2} D)) N_{q}(\varphi) + C N_{C}(\varphi)$$

$$Q_{L} = 2227.405 \text{ (kN/m}^{2})$$

↓ <u>Sable mou</u>

Les Données :

Sol	angle de frottement	Poids volumique	N _C	N _Y	N_q
Sable mou	31°	17	40.41	22.65	25.28

1. A long terme

$$Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma}(\varphi) + ((\gamma_{2} D)) N_{q}(\varphi) + C N_{C}(\varphi)$$

$$Q_{L} = 1647.67 (KN/m^{2})$$

	Q _L (kN	<mark>7/m²)</mark>
SOL	<mark>A court terme</mark>	<mark>A long terme</mark>
SABLE RAIDE	/	2227,40
SABLE MOU	/	1647,67
ARGILE RAIDE	257	738,8
ARGILE MOLLE	205,6	650,48

Tableau IV.1 : Résultats de la capacité portante d'une semelle filante

IV.4<u>COMPARAISON DES RESULTATS DE LA CAPACITE PORTANTE D'UNE SEMELLE</u> <u>FILANTE</u>

D'après le tableau précédent

- 1. les Résultats de la capacité portante à long terme de l'argile raide et l'argile molle sont plus élevés par rapport à la capacité portante à court terme qui est dans ce cas est plus défavorable, en tenant compte que les calculs sont effectués en contraintes totale.
- 2. Les Résultats obtenus ; montrent une différence dans la capacité portante à court terme de l'argile raide et celle de l'argile molle qui est contrôlés par les paramètres (C et φ) dans le cas ou il y a une dispersions interstitielles.
- 3. la notion de court terme n'est pas applicable et seule une justification à long terme est effectuée en calculant Q_L en conditions drainées.
- 4. On peut résumer que les sols pulvérulents supportent mieux que les sols cohérents caril présente une capacité plus élevée.

Figure IV.2 : Variation de la capacité portante en fonction de la nature du sol

D'après la Figure IV.2

- on peut déduire que la capacité portante d'un sol raide est supérieure à la capacité portante d'un sol mou (argile et sable)
- les capacités portante des sols sableux est plus importante que celle des sols argileux
- en ce qui concerne les argiles les capacités à courts termes sont inférieures aux capacités à long termes
- L'incohérence (c=0) des sols sableux implique un comportement à long terme.

IV.5<u>PROCEDURE DE LA SIMULATION NUMERIQUE.</u>

IV.5.1 <u>COUPE GEOTECHNIQUE ET GEOMETRIE DE L'OUVRAGE.</u>

On considère une semelle filante de largeur B reposant sur un sable et une argile non drainée ainsi qu'une surcharge q. Le modèle suppose un comportement en état de déformations planes (plane strain). La coupe Géotechnique retenue pour le calcul est présentée sur la figure suivante (Figure V.1).

- Charges
 - Charges (100 kpa-150 KPa 200 KPa 350 KPa)
- Sols
 - Argile
 - Sable

IV.5.2 <u>CARACTERISTIQUES GEOTECHNIQUES DES MATERIAUX.</u>

Le modèle utilisé est le modèle de sol (Hardening Soil Model) inclut dans Plaxis. Les tableaux (IV-2), (IV-3) résument les paramètres d'entrée pour modéliser les couches du sol.

 Remarque : Plaxis ne prend pas en compte les calcule dynamique, c'est-à-dire il n y a pas de moyen pour ajouter aux calcules les sollicitations sismiques. Pour simuler cela, on prend \$\phidyn=\$\phi-2\$° comme le cite la méthode statique.

Grandeurs physiques et mécaniques	Vale	urs
	Argile raide	Argile molle
Υ_{unsat}	16 KN/m	15 KN/m ³
$\Upsilon_{\rm sat}$	18 KN/m ³	18 KN/m ³
φ : angle de frottement interne	25°	24°
Ψ : dilatance	0°	0°
E : Module d'élasticité	10000 KN/m ²	1000 KN/m ²
ν : coefficient de Poisson	0,33	0,33
c: cohésion	50 KPa	50KPa

TableauIV.2 :Grandeurs physiques et mécaniques de l'argile

Grandeurs physiques et mécaniques	Val	eurs
	Sable mou	Sable raide
$\Upsilon_{unsat I}$	17 KN/m ³	17KN/m ³
Υ_{sat}	20 KN/m ³	21 KN/m ³
φ : angle de frottement interne	31°	33°
Ψ :dilatance	1°	3°
E :Module d'élasticité	80000 KN/m ²	120000 KN/m ²
ν : coefficient de Poisson	0,3	0,33
c: cohésion	1 kPa	1KPa

TableauIV.3 : Grandeurs physiques et mécaniques du sable

IV.5.3<u>ENTREE DES CARACTERISTIQUES GENERALES</u>

• <u>1^{er} cas ARGILE RAIDE</u>

Figure IV.3 : Définition de la géométrie du problème.

1) Caractéristiques du sol.

Il suffit alors de suivre les indications : Onglet *General* : - nom du matériau (ARGILE DRAINEE)

- Modèle de Mohr-Coulomb

- Matériau DRAINE

On peut alors saisir les caractéristiques données sur les figures 2, 3, 4 et 5.

neral Parameters Interfaces		General Parameters Interfaces	
Material Set Identification: ARGILE NON DRAINEE Material model: Mohr-Coulomb Material type: Drained	General properties γ _{unsat} 16,000 kN/m ³ γ _{sat} 18,000 kN/m ³	Stiffness E _{ref} : 1000,000 kN/m² v (nu): 0,330	Strength c _{ref} : 50,000 q(ph): 0,000 v(ps): 0,000
Comments	Permeability k _x : 1,000E-04 m/day k _y : 1,000E-04 m/day <u>A</u> dvanced	Alternatives G _{ref} : 375,940 kN/m ² E _{oed} : 1482,000 kN/m ²	$\begin{array}{c c} Velocities & & \\ V_{g}: & 15,670 & \textcircled{\bullet} & m/s \\ V_{p}: & 31,110 & \textcircled{\bullet} & m/s \end{array}$

• <u>Maillage et conditions aux limites</u>

Plaxis offre un choix d'utiliser des éléments triangulaires à 6 ou 15 nœuds Figure (V.3) pour modéliser les couches de sol et autres éléments de volume. L'élément choisi dans cette étude est le triangle à 15 nœuds qui fournit une interpolation du quatrième ordre pour les déplacements et une intégration numérique qui se fait sur douze points de Gauss (**points de contrainte**). Le triangle à 15 nœuds est un élément très précis qui a produit

des résultats en contraintes de haute qualité sur différents problèmes, comme par exemple le calcul de la rupture de sols incompressibles. L'utilisation des triangles à 15noeuds implique une consommation de mémoire assez élevée, et les calculs et la manipulation sont donc un peu ralentis. C'est pour cela qu'un type d'éléments plus simple est également disponible.

Figure IV.6 : Maillage du problème.

Par <Update> on accède au menu des conditions initiales.

- Accepter le poids volumique de l'eau.
- Laisser la nappe en profondeur : le sable sera supposé sec.
- Cliquez sur le bouton gauche pour générer les contraintes initiales :

On obtient alors la fenêtre ci-dessous où le K0 est proposé en fonction de la formule de Jacky

ΣM-w	e cht : 🗍	1,000	\$	
Cluster	Material	OCR	POP	ко
1	MC	N/A	N/A	0,485
-	- 31	-		K

Figure IV.7 : Initialisation des contraintes

Dans la présente analyse, la procédure qui a été naturellement adoptée est celle du chargement gravitaire (gravity Loading) du fait de l'existence de la pente du talus et les contraintes initiales sont générées en appliquant le poids propre du sol dans la première phase de calcul.

Dans ce cas, le chargement gravitaire est appliqué en une seule phase de calcul en utilisant un calcul du type plastique pour lequel le paramètre Loading input est fixé sur Total multipliers et \sum "weight est fixé à 1.0.

Figure IV.8 : Contraintes initiales.

On doit alors sauver les données avant de rentrer dans le programme de calcul (Calculations) : PLAXIS le propose automatiquement.

• <u>Calculs</u>

Dans l'onglet général, on accepte les options proposées de même que dans l'onglet paramètres. Au niveau des multiplicateurs, on fixe le multiplicateur de la charge A (Σ MLoadA) à 50 pour avoir une valeur de chargement égale à 50×1kPa qui excède largement la force portante du sol.

Les principaux résultats d'un calcul d'éléments finis sont les maillages déformés et les déplacements. Le résultat est présenté dans les figures suivantes :

Distributed load - static load s	ystem A	×
Geometry point 4	Geometry point 3	3
X-Value : 0.000 🗲 k	N/m ² X-Value : 0.0	000 🗲 kN/m ²
Y-Value : -350.000 🗲 ki	N/m ² Y-Value : -39	50 🚖 kN/m ²
		Perpendicular
		el <u>H</u> elp

Figure IV.9 : Définition de la charge à 350 kPa (par double-clic sur la surcharge).

Figure IV.10: Points dont on suit le déplacement.

Le calcul peut aller jusqu'à son terme : Load A = 350 KPA

Plaxis 8.2 Calculations - JJ.plx	Phase: < Phase 1 >
File Edit View Calculate Help	Total multipliers at the end of previous loading step Calculation progress Mission
General [Barameters Multipliers Preview Phase Calculation type	∑-Mdsp: 1,000 PMax 0,000 ∑-MoadA: 1,000 ∑-Marea: 1,000 ∑-MoadB: 1000 ∑-Marea: 0,000
Number / ID.: 1 ChARGE 350 KPA Plastic	2-Model: 1,000 Pore-Y: 0,000 Σ-Mweight: 1,000 Force-Y: 0,000 Σ-Maccel: 0,000 Stiffness: 0,004
Log info Prescribed utmate state nor reached Insect to display and utility in the state of the s	∑-Msf: 1,000 Time: 0,000 ∑-Mstage: 0,736 Dyn. time: 0,000 U Node A
Accuracy condition not reached in last step	Tteration process of current step Current step: 63 Max. step: 250 Element 155
Image: Television Start from Calculation Television Television <td< td=""><td>Iteration: 14 Max. iterations: 60 Decomposition: 100 % Global error: 0,011 Tolerance: 0,010 Calc. time: 23 s</td></td<>	Iteration: 14 Max. iterations: 60 Decomposition: 100 % Global error: 0,011 Tolerance: 0,010 Calc. time: 23 s
Construction 0 N/A N/A <th< td=""><td>Plastic points in current step Inaccurate: 0 Tolerated: 160 Plastic interface points: 0 Inaccurate: 0 Tolerated: 3</td></th<>	Plastic points in current step Inaccurate: 0 Tolerated: 160 Plastic interface points: 0 Inaccurate: 0 Tolerated: 3
	Tension points: 10 Cap/Hard points: 0 Apex points: 0
	Çancel

Figure IV.11 : Ecran de fin de calculFigure IV.12: Bilan du calcul

• Principaux Résultats

• <u>2^{ème}CAS ARGILE MOLLE</sub></u>

Figure IV.14 : Définition de la géométrie du problème

		Calculate			Total multipliers at the en	d of previo	us loading step		Calculation progr	ess
npot Output Curves					Σ-Mdisp:	1,000	PMax	0,000	MStage	
eneral Parameters Mult	ipliers Preview				Σ-MloadA:	1,000	Σ-Marea:	1,000		
Control parameters					Σ-MloadB:	1,000	Force-X:	0,000		
Additional Steps:	250 🚖 Rese Ignor	e undrained behaviour			Σ-Mweight:	1,000	Force-Y:	0,000		
	I Delet	e intermediate steps			Σ-Maccel:	0,000	Stiffness:	5,222E-04		
Iterative procedure	Loading in	put			Σ-Msf:	1,000	Time:	0,000		
General cetting Andred cetting Andr	(• Stag	ed construction								
C Manual setting	C Total	multipliers	Advanced]	Σ-Mstage:	0,589	Dyn. time:	0,000	UI No	ode A 🔄 💌
C Manual setting	C Tota C Incre Time inte	I multipliers mental multipliers rval : 0,0000 🚖 da	Advanced		Σ-Mstage:	0,589 nt step	Dyn. time:	0,000		ode A 🔄
C Manual setting	C Tota C Incre Time inte Define	multipliers mental multipliers rval : 0,0000 (全) da 3 end time : 0,0000 (全) da	Advanced ay <u>GW Flow</u> . ay Define		Σ-Mstage: Iteration process of curre Current step:	0,589 nt step 27	Max. step:	250	Element	ode A <u>-</u> 155
C Manual setting	efine	I multipliers mental multipliers rval : 0,0000 文 da d end time : 0,0000 ᢏ da	Advanced ay <u>GW Flow</u> . ay Define		Σ-Mstage: - Iteration process of curre Current step: Iteration:	0,589 nt step 27 6	Max. step: Max. iterations:	0,000 250 60	Element Decomposition:	ode A
C Manual setting	C Tota C Incre Define	I multipilers mental multipilers rval : 0,0000 (全) da d end time : 0,0000 (全) da	Advanced ay <u>GW Flow.</u> ay <u>Define</u>	Insert	Σ-Mstage: -Iteration process of currer Current step: Iteration: Global error:	0,589 nt step 27 6 0,010	Max. step: Max. iterations: Tolerance:	0,000 250 60 0,010	Element Decomposition: Calc. time:	ode A
C Manual setting	C Tota C Incre Time Estimate e. Start from Calculation	Imultipliers emental multipliers rval : 0,0000	Advanced ay <u>GW Flow.</u> ay <u>Define</u> <u>Time</u> Wa.	Linsert By Delete	Σ-Mstage: Iteration process of currer Current step: Iteration: Global error: Plastic points in current si	0,589 ent step 27 6 0,010	Dyn. time: Max. step: Max. iterations: Tolerance:	0,000 250 60 0,010	Element Decomposition: Calc. time:	155 100 % 10 s
dentification Phase n Initial phase 0 OrtHARGE 350 1	o. Start from Calculation 0 N/A 0 Plastic	Imultipliers mental multipliers mental multipliers troal: 0,0000 0 da dend time: 0,0000 0 da Loading input N/A Staged construction	Advanced ay <u>GW Flow.</u> ay Define W Next B Time Wa. 0,00 1	 Insert Delete First Last 0 0 0 1 24	Σ-Mstage: Iteration process of curre Current step: Iteration: Global error: Plastic points in current s' Plastic stress points:	0,589 ent step 27 6 0,010 xep 861	Max. step: Max. iterations: Tolerance:	0,000 250 60 0,010	Element Decomposition: Calc. time:	ode A
dentification initial phase 0	c. Start from Calculation 0 N/A 0 Plastic	I multipliers mental multipliers mental multipliers d end time : 0,0000 (\$ de dend time : 0,0000 (\$ de ded de de ded de de ded d	Advanced ay <u>GW Flow.</u> ay <u>Define</u> <u>Time</u> Wa. 0,00 (0,00)	Insert Exp Delete Insert Exp Delete Insert Last 0 0 1 24	Σ-Mstage: Iteration process of curre Current step: Iteration: Global error: Plastic points in current st Plastic istress points: Plastic interface points:	0,589 ent step 27 6 0,010 tep 861 0	Max. step: Max. iterations: Tolerance: Inaccurate: Inaccurate:	0,000 250 60 0,010 8 0	Element Decomposition: Calc. time: Tolerated: Tolerated:	ode A

Figure IV.15 :phase de calcul

• <u>Résultats obtenus</u>

Figure IV.16 : Contraintes totales.
• <u>3^{ème} cas SABLE MOU</u>

Plaxis 8.2 Calculations - sable moU.plx	Phase: < Phase	1>				
File Edit View Calculate Help	Total multiplers at the	end of previo	us loading step		Calculation prop	ress
Input Output Curves 🗁 🖶 🏥 🔶 Output	T-Mdiso:	1.000	PMax	0.000	MStage	
General Parameters Multiplers Preview	Σ-MoadA:	1.000	Σ-Marea:	1.000	a come o	-
Phase Calculation type	Σ-MoadB:	1.000	Force-X:	0.000		
Number / ID.: 1 charge 2500 KPA Plastic 💌	Σ-Mweight:	1,000	Force-Y:	0.000		
Start from phase: 0 - Initial phase	Σ-Maccel:	0,000	Stiffness:	0.029	1	
clasisfe	Σ-Msf:	1,000	Time:	0.000	12	
Prescribed ultimate state not reached!	Σ-Mstage:	0,719	Dyn. time:	0,000	an b	index a
Load advancement procedure fails, try manual control Inspect output and load-displacement curve		02.000			101 10	vooe A
Accuracy condition not reached in last step 👻	Iteration process of o	urrent step			STATES IN	90.00
Parameters	Current step:	55	Max. step:	250	Element	155
	Iteration:	19	Max. iterations:	60	Decomposition:	100 %
Next Republic Republi	Global error:	0,009	Tolerance:	0,010	Calc. tme:	255
Identification Phase no. Start from Calculation Loading input Time Wa First Last	Plastic points in curren	nt step				
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic stress points:	1413	Inaccurate:	0	Tolerated:	144
	Plastic interface poin	ts: 0	Inaccurate:	0	Tolerated:	3
	Tenning saints	10	Conditional assistant	2	Annu maintea	
	rension points:	10	capinard points:	0	Apex points:	
						Cancel
	8.4					and the state

Figure IV.18 :phase de calcul(Capacité portante).

Figure IV.19 :Contraintes effective.

Figure IV.20 : Présentation du model étudié.

Plaxis 8.2 Calculations - SABLE RAID 2.plx	Phase: < Phase 1 >	•				
File Edit View Calculate Help	⊤Total multipliers at the en	d of previo	us loading step		Calculation proc	ress
Tripo Duppe Curves 🕒 🔒 🛄 📥 🗰	Σ-Mdien:	1.000	PMay	0.000	MStage	
General Parameters Multiniers Preview	Σ-MloadA:	1,000	Σ-Marea	1 000		
Phase Calculation type	Σ-MloadB:	1,000	Force-X:	0.000		× 1
Number / ID.: 1 CHARGE 2500KPA Plastic 🗸	Σ-Mweight:	1.000	Force-Y:	0.000		 I
Start from phase: 0 - Initial phase	Σ-Maccel:	0,000	Stiffness:	0,498	1 × *	
	Σ-Msf:	1,000	Time:	0.000	- ARAN	
Prescribed ultimate state not reached!	Σ-Mstage:	0,891	Dyn. time:	0,000	Int R	Inde A
Soil body collapses Inspect output and load-displacement curve						
Accuracy condition not reached in last step	Iteration process of curre	ent step				
Parameters	Current step:	15	Max. step:	250	Element	145
	Iteration:	5	Max. iterations:	60	Decomposition:	100 %
	Global error:	0,002	Tolerance:	0,010	Calc. time:	6s
Identification Phase no. Start from Calculation Loading input Time Wa First Last Initial nhase 0 0 N/A N/A 0.00 0 0	Plastic points in current s	tep				
CHARGE 250 1 0 Plastic Staged construction 0,00 1 1 23	Plastic stress points:	153	Inaccurate:	22	Tolerated:	18
	Plastic interface points:	0	Inaccurate:	0	Tolerated:	3
	Tension points:	16	Cap/Hard points:	0	Apex points:	0
						<u>C</u> ancel

Figure IV.21 :phase de calcul(Capacité portante).

Figure IV.22 :Contraintes effective

• Le taux de variation des résultats

SOL M.E.F (KPA)	ANALYTIQUE(KPA)	TAUX DE
-----------------	-----------------	---------

			VARIATION
ARGILE RAIDE	257,6	257	0,23%
ARGILE MOLLE	206,15	205,6	0,26%
SABLE RAIDE	2227,6	2227,40	0,008 %
SABLE MOU	1797,5	1647,67	8,33%

TableauIV.4 : la variation de la capacité portante entre les deux sols selon les deux méthodes

Comme illustrées dans le tableauIV.4 on peut noter que :

- D'après les résultats obtenus par la MEF on peut déduire que la capacité portante d'un sol raide est supérieure à la capacité portante d'un sol mou (argile et sable)
- les capacités portante des sols sableux est plus importante que celle des sols argileux
- en ce qui concerne les argiles les capacités à courts termes sont inférieures aux capacités à long termes
- L'incohérence (c=0) des sols sableux implique un comportement à long terme.

Figure IV.23 : Comparaison de la capacité portante entre la M.E.F et la méthode analytique

La comparaison des résultats analytiques avec les résultats de la MEF(Plaxis) montre que dans tous les cas la différence est insignifiantes dans les trois premiers cas elle est inférieure à 1%, par contre pour le cas du sable mou elle de l'ordre de 8%, qui demeure une différence acceptable par ce qu'elle inférieur à 10%

B. INFLUENCE DE LA NAPPE PHREATIQUE

IV.6 LA METHODE ANALYTIQUE

Il y a lieu de déjauger les poids volumiques si les sols correspondants sont immergés :

• Pour une nappe affleurant à la surface du sol (sol saturé) :

$$Q_{\rm L} = \frac{1}{2} \gamma' B N_{\gamma}(\varphi) + ((\gamma' + D)) N_q(\varphi) + C' N_c(\varphi)$$

• Pour une nappe à grande profondeur (sol sec ou humide) :

$$\mathbf{Q}_{\mathrm{L}} = \frac{1}{2} \boldsymbol{\gamma}_{1} \boldsymbol{B} \boldsymbol{N}_{\boldsymbol{\gamma}} + (\boldsymbol{\gamma}_{2}.\boldsymbol{D}) \boldsymbol{N}_{q} + \boldsymbol{C} \boldsymbol{N}_{C}$$

1) ARGILE RAIDE

• Nappe en (a); $H_W = 8$

La nappe phréatique se trouve sous la profondeur d'influence de la semelle

Sol	angle de frottement	Poids volumique	N _C	N _Y	N _q
Argile raide	25°	16	25.1	8.34	12.7

 $H_W > (B + D)$ Donc $8 > (5 + 1.5)\sqrt{}$

Alors :

1. À long terme

$Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma} + ((\gamma_{2} D)) N_{q} + C N_{C}$ $Q_{L} = 738,8 (kN/m^{2})$ 2. A court terme	
$Q_L = (\pi + 2)Cu Q_L = 257(kN/m^2)$	

• Nappe en (b); $H_W = 4$

La nappe phréatique se trouve à une profondeur intermédiaire entre la profondeur de la semelle et la profondeur d'influence de la semelle. Il faut alors déjauger le sol dans le terme de surface.

Sol	angle de frottement	Poids volumique	N _C	Nγ	N _q
-----	------------------------	--------------------	----------------	----	----------------

Master II Géotechnique

		déjaugé			
Argile raide	25°	8	25.1	8.34	12.7

 $H_W > (B + D)Donc 4 > (5 + 1.5) \times$

$\underline{\text{Alors}}$:

1. À long terme :

$$Q_{L} = \frac{1}{2} \gamma \cdot BN_{\gamma} + ((\gamma \cdot D))N_{q} + CN_{C}$$

$$\gamma \cdot = \gamma_{sat} - \gamma_{w}$$

$$Q_L = 419,6(kN/m^2)$$

2. A court terme :

$$Q_{\rm L} = (\pi + 2) {\rm Cu} \, Q_{\rm L} = 257 ({\rm KN}/m^2)$$

2) ARGILE MOLLE

• Nappe en (a); $H_W = 8$

Sol	angle de frottement	Poids volumique	N _C	N _Y	N _P
Argile raide	24°	15	23.36	7.08	11.4

 $H_{W} > (B+D) \sqrt{\frac{A \log s}{s}}$

1. À long terme :

 $Q_{L} = \frac{1}{2}\gamma_{1}BN_{\gamma} + ((\gamma_{2}D))N_{q} + CN_{C}$ $Q_{L} = 650,48(kN/m^{2})$

2. A court terme :

$$Q_{L} = (\pi + 2)Cu Q_{L} = 205,6 \left(\frac{kN}{m^{-2}}\right)$$

• Nappe en (b); $H_W = 4$

Sol	angle de frottement	Poids volumique déjaugé	N _C	N _Y	N_q
Argile raide	25°	8	23.36	7.08	11.4

$$H_W > (B + D)4 > (5 + 1.5) \times$$

 $\underline{\text{Alors}}$:

1. À long terme :

$$\mathbf{Q}_{\mathrm{L}} = \frac{1}{2} \boldsymbol{\gamma} B N_{\boldsymbol{\gamma}} + \left(\left(\boldsymbol{\gamma} D \right) \right) N_{q} + C N_{C}$$

$$Q_L = 406.88 (kN/m^2)$$

2. A court terme :

$$Q_{\rm L} = (\pi + 2) C u$$

$$Q_{\rm L}=205,6({\rm kN}/m^2)$$

3) <u>SABLE RAIDE</u>

• Nappe en (a); $H_W = 8$

Sol	angle de frottement	Poids volumique	N _C	Nγ	N _q
Sable raide	33°	17	48.09	31.94	32.23

 $H_W > (B + D)$ $4 > (5 + 1.5) \sqrt{100}$

Alors :

1. À long terme :

 $Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma} + ((\gamma_{1} D)) N_{q} + C N_{C}$ $Q_{L} = 2227,40 \text{ (kN/}m^{2}\text{)}$

• Nappe en (b); $H_W = 4$

Sol	angle de frottement	Poids volumique déjaugé	N _C	Nγ	N _q
Sable raide	33°	11	48.09	31.94	32.23

 $H_W > (B + D)4 > (5 + 1.5) \times$

Alors :

1. À long terme :

$$Q_{L} = \frac{1}{2} \gamma \cdot BN_{\gamma} + ((\gamma \cdot D))N_{q} + CN_{C}$$

$$Q_{L} = 1458.235 (kN/m^{2})$$

4) SABLE MOU

• Nappe en (a); $H_W = 8$

Sol	angle de frottement	Poids volumique	N _C	N_{Υ}	N _q
Sable mou	31°	17	40.41	22.65	25.28

$$H_W > (B + D)$$
 $4 > (5 + 1.5) \sqrt{100}$

Alors :

1. À long terme :

$$Q_{L} = \frac{1}{2} \gamma_{1} B N_{\gamma} + ((\gamma_{2} D)) N_{q} + C N_{C}$$

$$Q_{L} = 1647,67 \ (kN/m^{2})$$

• nappe en (b); $H_W = 4$

Sol	angle de frottement	Poids volumique déjaugé	N _C	Nγ	N_q
Sable mou	31°	10	40.41	22.65	25.28

$$H_W > (B + D)4 > (5 + 1.5) \times$$

Alors :

1. À long terme :

$Q_{\rm L} = \frac{1}{2} \gamma \cdot B N_{\gamma} + ((\gamma \cdot D)) N_q + C N_C$	
$Q_{\rm L} = 985.86 ({\rm kN}/m^2)$	

SOL		<mark>Q (KN/m²) nappe en (a)</mark>	Q (KN/m²) nappe en (b)
Argile raide	A long terme	738,8	419,6
	A court terme	257	257

Argile molle	A long terme	650,48	406,88
	A court terme	205,6	205,6
Sable raide	A long terme	2227,40	1458,235
Sable mou	A long terme	1647,67	985,86

TableauIV.5 :Les valeurs de la capacité portante en fonction de la hauteur de la nappe phréatique

IV.7<u>COMPARAISONS ENTRE LES VALEURS DE LA CAPACITE PORTANTE EN</u> <u>FONCTION DE LA NAPPE PHREATIQUE</u>

- 1. Pour l'argile raide (à court terme) on peut remarquer que la valeur de la capacité portante est la même dans les 2 cas (h_w =8 h_w =4).
- 2. Nous remarquons aussi que la capacité portante ou la nappe phréatique se trouve à une hauteur de 8 m dans le cas de l'argile raide est plus élevée que dans le cas où la nappe phréatique se trouve à une profondeur de 4m, ce qui est valable pour le cas de l'argile molle.
- 3. La capacité portante du sable raide ou la hauteur de la nappe est 8m est nettement supérieureet d'une façon remarquable par rapport à la capacité portante du sable raide ou la nappe se trouve à 4m.
- 4. Dans le cas du sable mou la capacité portante prend une valeur plus faible dans le cas où la nappe se trouve à une profondeur de 4m par rapport au cas d'une profondeur h_w =8m.
- 5. On constate que la capacité portante diminue dans la présence d'une nappe phréatique.

Figure IV.24 :Variation de la capacité portante avec la présence d'une nappe phréatique a $H_w=8$

Figure IV.25 :Variation de la capacité portante avec la présence d'une nappe phréatique a H_w =4

4 A l'examen de ses figures on remarque la diminution de la capacité portante est proportionnelle à la diminution de la hauteur de la nappe phréatique.et cela est logique à cause de développement de la pression interstitielles, ce qui réduit considérablement la résistance du sol à long terme par contre une stabilité de la capacité à court terme pour les deux hauteurs et pour les deux sols.

VI.8 <u>METHODE DES ELEMENTS FINIS</u>

- 4 <u>1^{ER}cas argile raide</u>
 - Nappe en (a); $H_W = 8$

Figure IV.26 : Présentation du model étudié.Figure IV.27 : le model étudié avec la nappe

✤ <u>Calculs</u>

•

🚰 Plaxis 8.2 Calculations - H8.plx 🕒 🖂 🕹	pLaXiS 2D V8.? - Plastic Ca	lculation	- Plane Strain			
File Edit View Calculate Help	Project: H8 Phase: < Phase 1 >					
General Parameters Multipliers Preview	Total multipliers at the end	of previou	is loading step			odress
Phase Number / ID:: 1 OHARGE 350 KPA Start from phase: 0 - Initial phase Log info Comments	Σ -Mdisp: Σ -MloadA: Σ -MloadB: Σ -Mweight: Σ Messel	1,000 1,000 1,000 1,000	PMax Σ-Marea: Force-X: Force-Y:	0,000 1,000 0,000 0,000	MStage	~
Prescribed ultimate state not reached! Sol body collapses Inspect output and load-displacement curve v	Σ-Maccel: Σ-Msf: Σ-Mstage:	1,000 0,738	Time: Dyn. time:	0,004 0,000 0,000		Node A 💌
Parameters	Tteration process of curren	nt step				
Geldeten Geldeten	Current step: Iteration: Global error:	34 7 0,012	Max. step: Max. iterations: Tolerance:	250 60 0,010	Element Decomposition: Calc. time:	155 100 % 11s
CHARGE 350 1 0 Plastic Staged construction 0.00 1 1 35	Plastic points in current st	PD				
	Plastic stress points: Plastic interface points:	1183 0	Inaccurate: Inaccurate:	2 0	Tolerated: Tolerated:	121 3
[Lension points:	9	Capinard points:	0	Apex points:	Cancel

Figure IV.28 :phase de calcul(Capacité portante).

Figure IV.29 :Contraintes totales

Nappe en (b); $H_W = 4$ 0

Figure IV.30 : Présentation du model étudie Figure IV.31 : Le model étudie avec nappe

Plaxis 8.2 Calculations - H4.plx	Phase: < Phase 1 >	ę.				
File Edit View Calculate Help	Total multipliers at the en	d of previo	us loading step		Calculation prog	yess
Input Output Curves	Σ-Mdisp:	1,000	PMax	0,000	MStage	
General Parameters Multipliers Preview	Σ-MoadA:	1,000	Σ-Marea:	1,000		
Phase Calculation type	Σ-Moad8:	1,000	Force-X:	0,000	/	
Number / ID.: 1 CHARGE 350KPA Plastic	Σ-Mweight:	1,000	Force-Y:	0,000	/	
Start from phase: 0 - Initial phase	Σ-Maccel:	0,000	Stiffness:	0,004	11	
d og info	Σ-Msf:	1,000	Time:	0,000	12	
Prescribed ultimate state not reached!	Σ-Mstage:	0,736	Dyn. time:	0,000	UI I	Node A 💌
Inspect output and load-displacement curve	Iteration process of curre	nt step			· · · · · · · · · · · · · · · · · · ·	
Daramatare	Current step:	63	Max. step:	250	Element	155
	Iteration:	14	Max. iterations:	60	Decomposition:	100 %
Rext Rext Delete	Global error:	0,011	Tolerance:	0,010	Calc. time:	23s
Identification Phase no. Start from Calculation Loading input Time Wa First Last						
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic points in current st	tep	Tener makes		Televated	160
CHARGE 330 1 0 Plastic Staged construction 0,00 1 1 /	Plastic stress points:	1565	Inaccurate:	0	Tolerated:	160
	masuc mierrace points:	0	maccurate:	U	Toleraded:	3
	Tension points:	10	Cap/Hard points:	0	Apex points:	0
						Çancel

Figure IV.32 : Phase de calcul (Capacité portante).

Figure IV.33 :Contraintes totales

4 2^{ème} cas argile molle

 $\circ \quad Nappe\ en\ (a)\ ; \quad H_W=8$

• <u>calculs</u>

Teach Durange Caracter Caracte	Total multipliers at the e	nd of previo	us loading step		Calculation progr	ess
	Σ-Mdisp:	1,000	PMax	0,000	MStage	
General Parameters Multipliers Preview	Σ-MloadA:	1,000	Σ-Marea:	1,000		
Phase Calculation type	Σ-MloadB:	1,000	Force-X:	0,000		
Number / ID.: 1 CHARGE 350 KPA Plastic	Σ-Mweight:	1,000	Force-Y:	0,000		
Start from phase: 0 - Initial phase	Σ-Maccel:	0,000	Stiffness:	2,723E-05		
Log info	Σ-Msf:	1,000	Time:	0,000		
Prescribed ultimate state not reached! Load advancement procedure fails, try manual control	Σ-Mstage:	0,590	Dyn. time:	0,000		ode A 💌
Inspect output and load-displacement curve	Iteration process of curr	rent step				
Durantural	Current step:	80	Max. step:	250	Element	145
<u>Farameters</u>	Iteration:	1	Max. iterations:	60	Decomposition:	100 %
🕰 Next 🖉 Insert 🚳 Delete	Global error:	0,016	Tolerance:	0,010	Calc. time:	27 s
Identification Phase no. Start from Calculation Loading input Time Wa First Last		sten				
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic points in current.	835 835	Inaccurate:	587	Tolerated:	87
CHARGE 350 1 0 Plastic Staged construction 0,00 0 1 14	Plastic interface points.	. 0.55	Inaccurate:		Tolerated:	3
	Flastic interface points.		maccurate.	0	Tolerateu.	5
	Tension points:	15	Cap/Hard points:	0	Apex points:	0
						<u>C</u> ancel

Figure IV.36 :Phase de calcul

• <u>Résultats obtenus</u>

Figure IV.37 :Contrainte effective

 $\circ \quad Nappe\ en\ (b)\ ;\ \ \mathbf{H}_{\mathbf{W}}=\mathbf{4}$

Figure IV.38: Présentation du model étudié Figure IV.39 : le model étudié avec la nappe

• <u>Calculs</u>

File Edit View Calculate Help	⊤Total multipliers at the en	id of previou	us loading step		Calculation progress	
Input Cutput Cutres Co	Σ-Mdisp:	1,000	PMax	0,000	MStage	_
General Parameters Multipliers Preview	Σ-MloadA:	1,000	Σ-Marea:	1,000		
Phase Calculation type	Σ-MloadB:	1,000	Force-X:	0,000		
Number / ID.: 1 OHARGE 350 KPA Plastic	Σ-Mweight:	1,000	Force-Y:	0,000	1	
Start from phase: 0 - Initial phase Advanced	Σ-Maccel:	0,000	Stiffness:	7,706E-05		
Log info	Σ-Msf:	1,000	Time:	0,000		
Prescribed ultimate state not reached!	Σ-Mstage:	0,589	Dyn. time:	0,000	U Node A	•
Sol body cotapses Inspect output and load-displacement curve	Iteration process of curre	ent step			,	
Parameters	Current step:	69	Max. step:	250	Element	145
	Iteration:	1	Max. iterations:	60	Decomposition:	100 %
Rext Delete	Global error:	0,016	Tolerance:	0,010	Calc. time:	27 s
Identification Phase no. Start from Calculation Loading input Time Wa First Last	-Plastic points in current s	ten				
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic stress points:	817	Inaccurate:	6	Tolerated:	85
	Plastic interface points:	0	Inaccurate:	0	Tolerated:	3
	Tension points:	12	Cap/Hard points:	0	Apex points:	0
						<u>C</u> ancel

 Image: Description of the second s

• <u>Résultats obtenus</u>

Figure IV.41 :Contraintes totale

↓ <u>3^{ème} cas sable raide</u>

 $\circ \quad Nappe\ en\ (a)\ ; \quad \mathbf{H}_{\mathbf{W}}=\mathbf{8}$

Master II Géotechnique

Figure IV.42 : Présentation du model étudié. Figure IV.43 : le model étudié avec la nappe

- <u>Calculs</u>
 - Le calcul peut aller jusqu'à son terme : Load A = 2500 KPA

Plaxis 8.2 Calculations - sable RAIDE 4m.plx	□ Total multipliers at the er	nd of previou	us loading step		Calculation progre	ess
File Edit View Calculate Help	Σ-Mdisn:	1.000	PMax	0.000	MStage	
Input Output Curves	Σ-MloadA:	1.000	Σ-Marea:	1.000		-
General Parameters Multipliers Preview	Σ-MloadB:	1.000	Force-X:	0.000		
Phase Calculation type	Σ-Mweight:	1.000	Force-Y:	0.000	معر ال	
Number / ID.: 1 charge 2500 KPA Plastic	Σ-Maccel:	0.000	Stiffness:	0.064	and the second s	
Start from phase: 0 - Initial phase	Σ-Msf:	1.000	Time:	0.000		
Log info	Σ-Mstage:	0.912	Dvn. time:	0.000	101 100	
Prescribed ultimate state not reached!						
Inspect output and load-displacement curve Accuracy condition not reached in last step	☐Iteration process of curr	ent step				
	Current step:	31	Max. step:	250	Element	145
Parameters	Iteration:	17	Max. iterations:	60	Decomposition:	100 %
🕰 Next 🚳 Insert 🚳 Delete	Global error:	0,010	Tolerance:	0,010	Calc. time:	10 s
Identification Phase no. Start from Calculation Loading input Time Wa First Last	Plastic points in current s	ten				
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic stress points:	141	Inaccurate:	12	Tolerated:	17
w charge 2000 1 0 Plastic Staged construction 0,00 0 1 13	Plastic interface points:	0	Inaccurate:	0	Tolerated:	3
	-					
	l ension points:	0	Cap/Hard points:	0	Apex points:	0
						Cancel
						Gancer

Figure IV.44 : Phase de calcul (Capacité portante).

• <u>Résultats obtenus</u>

Figure IV.45 :Contraintes effectives

 $\circ \quad Nappe \ en \ (b) \ ; \ H_W = 4$

Figure IV.46 : Présentation du model étudié. Figure IV.47 : le model étudié avec la nappe

• calculs

Plaxis 8.2 Calculations - sable RAIDE 4m.plx	Phase: < Phase 1 >
File Edit View Calculate Help	Total multipliers at the end of previous loading step
Input Output Curves	Σ-Mdisp: 1,000 PMax 0,000 MStage
General Parameters Multipliers Preview	Σ-MloadA: 1,000 Σ-Marea: 1,000
Phase Calculation type	Σ-MloadB: 1,000 Force-X: 0,000
Number / ID.: 1 charge 2500 KPA Plastic	Σ-Mweight: 1,000 Force-Y: 0,000
Start from phase: 0 - Initial phase Advanced	Σ-Maccel: 0,000 Stiffness: 5,222E-04
Log info	Σ-Msf: 1,000 Time: 0,000
Prescribed ultimate state not reached!	Σ-Mstage: 0,589 Dyn. time: 0,000 UI Node Δ
Inspect output and load-displacement curve	
Accuracy condition not reached in last step	Iteration process of current step
Parameters	Current step: 27 Max. step: 250 Element 155
	Iteration: 6 Max. iterations: 60 Decomposition: 100 %
Rext Rext Delete	Global error: 0,010 Tolerance: 0,010 Calc. time: 10 s
Identification Phase no. Start from Calculation Loading input Time Wa First Last	- North and the second state
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic stress points in current step
	Plastic interface points: 0 Toecurate: 0 Tolerated: 3
	Productified points. 0 Indecade. 0 Follower. 5
	Tension points: 15 Cap/Hard points: 0 Apex points: 0
	<u>C</u> ancel

Figure IV.48 : Phase de calcul (Capacité portante).

• <u>Résultats obtenus</u>

Figure IV.49 :Contrainte effective

4 <u>4^{eme} cas sable mou</u>

• Nappe en (a); $H_W = 8$

Figure IV.50 : Présentation du model étudié. Figure IV.51: le model étudié avec la nappe

• <u>Calculs</u>

Le calcul peut aller jusqu'à son terme : Load A = 2500 KPA

Plaxis 8.2 Calculations - sable mou 8m.plx	Total multipliers a	t the end of previo	us loading step		Calculation progr	ess	
	Σ-Mdisp:	1,000	PMax	0,000	MStage		
Input Output Curres	Σ-MloadA:	1,000	Σ-Marea:	1,000			
General Barameters Multipliers Preview	Σ-MloadB:	1,000	Force-X:	0,000		المعمر	
Phase Calculation type	Σ-Mweight:	1,000	Force-Y:	0,000	- - - -		
Number / ID.: 1 charge 2500 KPA Plastic	Σ-Maccel:	0,000	Stiffness:	0,017			
Start from priase: 10 - Initial priase	Σ-Msf:	1,000	Time:	0,000			
Log info	Σ-Mstage:	0,746	Dyn. time:	0,000			
Casal advancement procedure fails, try manual control Impect coulds and backgement curve Accuracy condition not reached in last step +	Iteration process	of current step	Maria atau	252	,		
Daramatare	Current step:	34	Max. step:	250	Element	145	
	Iteration:	33	Max. iterations:	60	Decomposition:	100 %	
🛱 Next 🖳 Insert 🖳 Delet	e Global error:		Tolerance:	0,010	Calc. time:	12 s	
Identification Phase no. Start from Calculation Loading input Time Wa First Last	Identification Phase no. Start from Calculation Loading input Time Wa First Last						
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic stress po	inter 51	Inaccurate:	12	Tolerated:		
V charge 2500 1 0 Plastic Staged construction 0,00 1 1 13	Plastic interface	ncinter 0	Indecorate:	12	Tolerated.		
	Plasuc Internace	points: 0	Indccurate:	v	Tolerateu:	2	
	Tension points:	0	Cap/Hard points:	0	Apex points:	0	
						Cancel	

Figure IV.52 :Plan de calcul

• <u>Résultats obtenus</u>

Master II Géotechnique

Figure IV.53 :Contraintes effectives

• Nappe en (b); $H_W = 4$

Figure IV.54 : Présentation du model étudié. Figure IV.55 : le model étudié avec la nappe

• <u>Calculs</u>

Plaxis 8.2 Calculations - sable MOU 4m.plx	Total multipliers at the e	nd of pravio	us loading step			
File Edit View Calculate Help	rotal multipliers at the el	no or previo	us loading step		Calculation progress	
📷 🚾 👝 📮 🕭 🤃 -> Output	Σ-Mdisp:	1,000	PMax	0,000	molage	
Input Output Curres	Σ-MloadA:	1,000	Σ-Marea:	1,000		100
General Parameters Multipliers Preview	Σ-MloadB:	1.000	Force-X:	0.000		A
Phase Calculation type	Σ-Mweight:	1.000	Force-V:	0.000		
Number / ID.: 1 charge 2500 KPA Plastic 💌	2 Harrel	0,000	Chilfrone	0,000		
Start from phase: 0 - Initial phase	2-maccei;	0,000	Sumess:	0,005		
clasisfe	Σ-Msf:	1,000	Time:	0,000		
Eug mile Commercial Commerci	Σ-Mstage:	0,418	Dyn. time:	0,000	UI Node	A
Soli body collapses Tragect utput and load-displacement curve Accuracy condition not reached in last step +	Titeration process of curr	ent step				
	Current step:	28	Max. step:	250	Element	155
Larameters	Iteration:	20	Max. iterations:	60	Decomposition:	100 %
🐺 Next 🛛 🗮 Insert 🖉 Delete	Global error:	0,010	Tolerance:	0,010	Calc. time:	11s
Identification Phase no. Start from Calculation Loading input Time Wa First Last				100		
Initial phase 0 0 N/A N/A 0,00 0 0 0	Plastic points in current s	step				
✔ charge 2500 1 0 Plastic Staged construction 0,00 🎆 1 1 13	Plastic stress points:	40	Inaccurate:	13	Tolerated:	7
	Plastic interface points:	0	Inaccurate:	0	Tolerated:	3
	Tension points:	0	Cap/Hard points:	0	Apex points:	0
						Cancel

Figure IV.56 :Phase de calcul

• <u>Résultats obtenus</u>

Figure IV.57 :Contraintes effectives

• <u>Le taux de variation pour Hw=8</u>

SOL	M.E.F (KPA)	ANALYTIQUE	TAUX DE
	$(h_w = 8)$	$(KPA) (h_w = 8)$	VARIATION
ARGILE RAIDE	258,3	257	0,50 %
ARGILE MOLLE	206,15	205,6	0,27 %
SABLE RAIDE	2280	2227,40	2,30 %
SABLE MOU	1795	1647,67	8,20 %

- La comparaison des résultats analytiques avec les résultats de la MEF(Plaxis) montre que dans tous les cas la différence est insignifiantes dans les trois premiers cas elle est inférieure à 3%, par contre pour le cas du sable mou elle de l'ordre de 8%, qui demeure une différence acceptable par ce qu'elle inférieur à 10%
- les capacités portante des sols sableux est plus importante que celle des sols argileux

Figure IV.58 : La variation de la capacité portante en présence de la hauteur de la nappe Hw=8 selon les deux méthodes

- D'après l'histogramme montré si dessus on peut déduire que la capacité portante d'un sol raide est supérieure à la capacité portante d'un sol mou (argile et sable)
- La capacité portante des argiles est plus faible, par rapport aux sables car les calculs se fait à court terme étant donné qu'il n y a pas de changement de volume vu la perméabilité de l'argile qui est très inférieurs à celle du sable.
 - SOL M.E.F (KPA) **ANALYTIQUE** TAUX DE $(h_w = 4)$ $(KPA) (h_w=4)$ VARIATION **ARGILE RAIDE** 257 257.6 0,23 % **ARGILE MOLLE** 0,43 % 206,5 205,6 SABLE RAIDE 1472,5 1458,235 0,96 % SABLE MOU 1045 985.86 5,64 %
- <u>Le taux de variation pour Hw=4</u>

TableauIV.7 :la variation de la capacité portante entre les deux sols avec une nappe phréatiques h_w=4 selon les deux méthodes

- La comparaison des résultats analytiques avec les résultats de la MEF(Plaxis) montre que dans tous les cas la différence est insignifiantes dans les trois premiers cas elle est inférieure à 1%, par contre pour le cas du sable mou elle de l'ordre de 5%, qui demeure une différence acceptable par ce qu'elle inférieur à 10%.
- L'incohérence (c=0) des sols sableux implique un comportement à long terme.

Figure IV.59 :La variation de la capacité portante en présence de la hauteur de la nappe Hw=4 selon les deux méthodes

- La capacité portante des argiles est plus faible, par rapport aux sables car le calcul des sables se fait à long terme vu que le sol a été compacté sous l'effet des charges à long termes.
- Aussi la texture des argiles est différentes à celle des sables l'une est sous forme de feuillet et l'autre sous forme de grains bien plus grandes et plus rigide que l'argile

Sol	Sans nappe	Avec nappe h _w =8	Avec nappe h _w =4	$\frac{\text{Taux de variation}}{\frac{\text{Hw}=8-\text{S.N}}{\text{Hw}=8}} \times 100$	Taux de variation $\frac{Hw=4-S.N}{Hw=4} \times 100$
Argile raide	257	257	257	0,00%	0,00%
Argile molle	205,6	205,6	205,6	0,00%	0,00%
Sable raide	2227,4	2227,4	1458,235	0,00%	34,53%
Sable mou	1647,67	1647,67	985,86	0,00%	40,16%

> RESULTATS FINALES POUR CETTE ETUDE

TableauIV.8 :les taux de variation de la capacité portante analytiques de cette étude

• La comparaison des résultats analytiques montre que dans le cas sans nappe phréatique et avec nappe phréatique hw=8 la différence est nulles dans les quatre types des sols par contre pour le cas où la nappe phréatique se trouve à une hauteur hw=4 la différence est significatives pour les sables raide35% et pour les

sables mou 40% car la porosité des sables est plus grand que celle des argiles ce qui permet une remontée capillaire ,et le sol au dessusde la nappe ne sont pas tout àfait secs.

• Aussi la texture des sables qui sont sous forme granulaire bien plus grand et plus rigide que l'argile.

Figure IV.60 :Les résultats globaux analytiques de cette étude

- Ce graphe comprend les résultats globaux analytiques de cette étude, car elle montre assez logiquement que les résultats sont identiques pour la capacité portante sans nappe phréatique et avec nappe phréatique d'une hauteur 8m alors on constate que cette hauteur n'a pas d'influence significative sur la capacité mais on constate unediminution de la capacité pour la hauteur 4m dans les sols sableux.

Sol	Sans nappe	Avec nappe h _w =8	Avec nappe h _w =4	$\frac{\text{Taux de variation}}{\frac{\text{Hw}=8-\text{S.N}}{\text{Hw}=8}} \times 100$	Taux de variation $\frac{Hw=4-S.N}{Hw=4} \times 100$
Argile raide	257,6	258,3	257,6	0,27%	0,00%
Argile molle	206,15	206,15	206,5	0,00%	0,16%
Sable raide	2227,6	2280	1472,5	2,29%	33,89%
Sable mou	1797,5	1795	1045	0,13%	41,86%

TableauIV.9 : les taux de variation de la capacité portante par la M.E.F de cette étude

• La comparaison des résultats de la M.E.F montre que dans le cas sans nappe phréatique et les deux hauteur de la nappe hw=8 et hw=4 la différence est presque nulles pour les argiles (raide et mou) et insignifiantes dans le cas des sables pour hw=8 par contre pour le cas où la nappe phréatique se trouve à un hauteur hw=4 la différences est significatives pour les sables raide d'ordre 33% et pour les sables mou d'ordre 41 % car cette argumentation du au calcul à long terme et à court terme ainsi que n'y a pas de changement de volume pour les sols argileux.

Figure IV.61 :Les résultats globaux de la M.E.F de cette étude

- Les capacités calculée par la M.EF sont significativement supérieure aux capacités calculées par Terzaghi cela est dû au fait que les paramètres considérés du Plaxis ; tels que le comportement de non linéarité du sol ; angle de frottement ; la dilatance ; interaction sol-structure. Par contre, la méthode de Terzaghi ne tient compte que de l'interaction sol-sol.

IV.9 <u>CONCLUSION FINALE</u>

- A l'issue de cette étude on constate les possibilitésdes calculs numériques simulés par le code calcul Plaxis qui tient compte des comportement élasto-plastique des sols de l'interactionsol-structure, le phasage des calculs, la discrétisation en éléments finis du complexes sol-structure, et le raffinement du maillage tous ces paramètres font que l'approches numériques est plus fiables que l'approches analytiques.
- La capacité portante des sols pulvérulents (calcul à long terme) est plus grande de celle des sols cohérents argileux (calcul à court terme)
- La présence de la nappe phréatique n'a pas d'influence sur la capacité portante du sol argileuxa court terme car il n y'a pas de changement de volume du solide (eau-argile)

Par contre on remarque une différence significative dans le cas des sols pulvérulent (sableux) lorsque la nappe est proche de l'assise de la fondation

CHAPITREV

CONCLUSIONS ET RECOMNDATIONS

• CONCLUSIONS

*C*e travail s'inscrit dans le cadre de la recherche pour l'obtention d'un master génie civil, spécialité Géotechnique, et qui traite un problème très important dans le domaine de Génie civil et précisément le domaine de la géotechnique et qui est l'étude de l'influence de la nature de sol de fondation sur la capacité portante d'une semelle filante, De ce fait, elles constituent une alternative à l'adoption des semelles filantes.

*E*n ce qui concerne le problème de la capacité portante, nous avons étendu les solutions disponibles dans la littérature au cas des fondations superficielles.

- 1. Nous n'aspirons pas ici à tirer des leçons générales sur le calcul de la capacité portante des fondations superficielles, ni à déclarer qu'une des méthodes « est la bonne » soit manuelle ou par le code de calcul en élément finis Plaxis.
- 2. On a pu montrer l'influence de la nature du sol de fondation sur la capacité portante d'une semelle filante.
- 3. les valeurs de la capacité portante analytique (Méthode de Badhu et El-karni), sont plus élevée par rapport à celles calculées numériquement par le logiciel « Plaxis ». ce qui rend cette méthode conservatrice.
- 4. Les résultats obtenus montrent que la simulation numérique en utilisant le code éléments finis (Plaxis) donne des résultats concordant de manière satisfaisante avec les résultats de la littérature.

• **RECOMMANDATIONS**

- Il est recommandé de faire une étude expérimentale dans le même sujet pour comparer et valider les résultats numériques avec les résultats expérimentaux.
- > Il serait intéressant de faire le même travail en utilisant un modèle de calcul numérique en 3D.
- L'Etude du comportement des fondations filantes par l'introduction d'un système de renforcement du sol.

Péférences Bibliographiques

- Vesic, A.S., 1973. "Analysis of ultimate loads of shallow foundations." *Journal of the Soil Mechanics and Foundations Division*, ASCE, Vol. 99, No.SM1, pp. 45-73.
- Terzaghi, K., Theoretical Soil Mechanics. Wiley, New York, 1943.
- Kumbhojkar, A. S., Numerical evaluation of Terzaghi *g N*, J.Geotech.Eng., ASCE, 119(3), 598, 1993.
- Meyerhof, G. (1981): The ultimate bearing capacity of foundations. Géotechnique 2, No. 4, 301-301-322.
- Mesta P : Maillage d'elements finis pour les ouvrages de géotechnique. Bulletin des LCPC212, 1997
- Mesta P. & Prat M. : Ouvrages en interaction. Hermes science publications, Paris, 1999.
- Smith I. M. & Griffiths D. V. : Programming the finite element method. Ion Wiley & Sons, 1988.
- Prandtl, L., Uber die eindringungs-festigkeit plastisher baustoffe und die festigkeit von Schneiden, *Z. Ang. Math. Mech.*, 1(1), 15, 1921.
- Caquot, A., and Kerisel, J., Tables for the Calculation of Passive Pressure, Active Pressure and Bearing Capacity of Foundations. Gauthier-Villars, Paris, 1949.
- Vesic, A. S., Bearing capacity of shallow foundations, in Foundation Engineering Handbook, Winterkorn, H. F., and Fang, H. Y., Eds., Van Nostrant Reinhold Co., 1975, 121.
- Caquot, A., and Kerisel, J., Sue le terme de surface dans le calcul des fondations en Milieu pulverulent, in Proc., III Intl. Conf. Soil Mech. Found. Eng., Zurich, Switzerland, 1, 1953, 336.
- Chen W.F, McCarron W.O; 1991. Bearing capacity of shallow foundations. Chapter 4 in « Foundation engineering handbook », edited by H.Y.Fang. Van Nostrand Reinhold, New York.
- Fondations et procédés d'amélioration- Guide d'application de l'Eurocode8 (parasismique), AFNOR/EYROLLES, 2013.
- Boulon M. Flavingny E, Malecot y et « pratique des éléments finis en Géotechnique », document1, laboratoire 3S et Terrasol, décembre 2004.

Netographique

- http://WWW.introduction à la géotechnique_fichiers /ch1601h2.htm
- http://WWW.uni-Weimar.de/Bauing/geotechnik/D/Staff/witt98-1-Teilsicherheit.pdf
- http://WWW.uni-Weimar.de/Bauing/geotechnik/D/Staff/witt/GTS2003-witt.pdf