

 الجمهورية الجزائرية الديمقراطية الشعبية

 وزارة التعليم العالي والبحث العلمي

ـــة –جامعة باجي مختار ـــــ ــــــ عنابـ

UNIVERSITÉ BADJI MOKHTAR - ANNABA

BADJI MOKHTAR – ANNABA UNIVERSITY

Mémoire

Présenté en vue de l’obtention du Diplôme de Master

 Thème:

 Présenté par : LARBI Abdel Djalil et BENTERKI Brahim

 Encadrant : FEZARI Mohamed Professeur Université Badji Mokhtar - Annaba

Jury de Soutenance :

Président U. B. M. Annaba Professeur TAIBI Mahmoud

Encadrant U. B. M. Annaba Professeur FEZARI Mohamed

Examinateur U. B. M. Annaba M. C. BOUTERAA Nadia

Année Universitaire : 2019/2020

 Faculté : Sciences de l’Ingéniorat

 Département : Electronique

 Domaine : Sciences et Technologie

 Filière : Télécommunications

 Spécialité : Réseaux et Télécommunications

Wearable IoT object using Raspberry Pi

I


Remerciements:

 A Mes chers Parents, aucune dédicace ne saurait être assez
éloquente pour exprimer ce que vous méritez, pour tous les
sacrifices que vous n’avez cessé de me donner depuis ma
naissance, durant mon enfance et même à l’âge adulte. Je vous
dédie ce travail en témoignage de mon profond amour. Puisse
Dieu, le tout puissant, vous préserver et vous accorder santé,
longue vie et bonheur.

 A notre encadreur Mr. FEZARI Mohamed pour sa
disponibilité et ses précieux conseils.

 Aux membres du jury qui nous ont fait l’honneur d’accepter
de juger notre modeste travail.

 A mon binôme BENTERKI Brahim et mes amis(es), vous
avez toujours été présents pour les bons conseils.
Votre affection et votre soutien m’ont été d’un grand secours au
Long de Mon parcours.

 A mes frères, ma sœur et toute ma grande famille, les mots
ne suffisent guère pour exprimer l’attachement, l’amour et
l’affection que je porte pour vous.

 A tous ceux qui, de près ou de loin, nous ont aidés à la
réalisation de ce travail.

LARBI Abdeldjalil

II

 Mes parents

 Ma mère, qui a œuvré pour ma réussite, de par son amour,
son soutien, tous les sacrifices consentis et ses précieux conseils,
pour toute son assistance et sa présence dans ma vie, reçois à
travers ce travail aussi modeste soit-il, l'expression de mes
sentiments et de mon éternelle gratitude.

 Mon père, qui peut être fier et trouver ici le résultat de
longues années de sacrifices et de privations pour m'aider à
avancer dans la vie. Puisse Dieu faire en sorte que ce travail porte
son fruit; Merci pour les valeurs nobles, l'éducation et le soutien
permanent venu de toi.

 A mon frère Fakhri, ma petite sœur Salma je vous aime très

fort.

 Aux membres du jury qui nous ont fait l’honneur d’accepter
de juger notre modeste travail.

 A LARBI Abdeljalil qui a été mon binôme durant tout notre
cursus.

 Je voudrais exprimer mes gratitudes à tous mes amis (es) qui
m’ont apporté leur support moral.

BENTERKI Ibrahim

III

 ملخص :

بروتوكول الذي يتيح التفاهم بين الأجهزة المترابطة مع بعضها)عبر الانترنتالأشياء جيلا جديدا من انترنتتعتبر

 .وغيرها الاصطناعي المختلفةوأدوات والمستشعرات والحساساتوتشمل هذه الأجهزة الأدوات . (الإنترنت

هذا المشروع نحاول صنع خوذة ذكية بكفاءات جيدة و ربطها بشبكة انترنت محلية لتمكن المحارب داخل ساحة في

 ربإرسال أواماستقبال المعلومات و القيام االأخيرة بإمكانههذه ,المعركة من الاتصال عن بعد المحطة القاعدية للجيش

 للجندي عبر هذه الخوذة في حالات الخطر .

Résumé :

L’internet des objets est la nouvelle génération d’internet qui permet l’interconnexion des

objets entre eux (par internet protocole), ces derniers comprennent des outils, des capteurs et

divers outils d'intelligence artificielle, entre autres.

Dans ce projet, nous essayons de construire un casque intelligent et le reliant via un réseau

internet local pour permettre au soldat à l'intérieur du champ de bataille de communiquer à

distance avec la station de base de l'armée, cette dernière peut recevoir des informations et

d’envoyer des ordres au soldat via ce casque en cas de danger.

Abstract:

The Internet of Things is the new generation of the Internet that allows objects to be

interconnected with each other (via internet protocol), the latter including tools, sensors and

various artificial intelligence tools, among others.

In this project, we are trying to construct a smart helmet and connect it through a local

internet network to allow the soldier inside the battlefield to communicate remotely with the

army base station; the latter can receive information and send orders to the soldier via this

helmet in case of danger.

https://ar.wikipedia.org/wiki/%D8%A8%D8%B1%D9%88%D8%AA%D9%88%D9%83%D9%88%D9%84_%D8%A5%D9%86%D8%AA%D8%B1%D9%86%D8%AA
https://ar.wikipedia.org/wiki/%D8%A8%D8%B1%D9%88%D8%AA%D9%88%D9%83%D9%88%D9%84_%D8%A5%D9%86%D8%AA%D8%B1%D9%86%D8%AA
https://ar.wikipedia.org/wiki/%D8%A8%D8%B1%D9%88%D8%AA%D9%88%D9%83%D9%88%D9%84_%D8%A5%D9%86%D8%AA%D8%B1%D9%86%D8%AA

IV

Chapter I:

Figure Page Description

1 4 different IoT systems

2 5 smart helmet of riders with camera

3 6 smart IoT system for old people

4 6 system of health monitoring and assisted living

5 7 wearable glove smart system

Chapter II:

Figure Page Description

1 9 The first electronic schema of different hardware

components shows how system

2 10 The final electronic schema of different hardware

components

3 10 hardware synoptic of soldier’s Wearable device

4 11 different ports of the Raspberry pi

5 12 comparison between raspberry pi and Arduino

6 14 construction of the smart helmet

Chapter III:

Figure Page Description

1 20 installing VNC server on raspberry pi

2 21 configuration interface of the raspberry pi

3 21 updating Raspbian and installing Python3

4 22 enabling i2c protocol and Camera module

5 23 result of flask application

6 25 result of the web application using flask and Sqlite3

V

Chapter IV:

Figure Page Description

1 27 The software Synoptic of wearable IoT helmet

2 28 Position of different sensors

3 29 Result of DHT22 test using Python3

4 29 Raspberry pi CSI port for the Camera v1.3

5 31 Result of the test of Gyroscope and accelerometer in 6-axis31

6 32 algorithm of the application

7 37 base station interface shows temperature, video in real time and
control panel

8 39 Soldier movements on 6-axis using a simple 3D anthropomorphic
in real time

9 40 FigIV.9-Standing position of the soldier

10 40 FigIV.10-Left slanted position of soldier

2-Abreviation list:

IoMT internet of Military Things

IoT internet of things

OS operating system

MC microcontroller

LED Light emitting diode

SCL Serial clock Line

SDA Serial Data Line

GND Ground

HTML Hypertext Markup Language

CSS Cascading Style Sheets

NPM Node package manager

HTTP Hypertext Transfer Protocol

IP internet protocol

VI

INDEX

Remerciement …………………………………………………………………………..….I
Abstract-résumé-ملخص …………………………………………………………………….III

Figures list ……………………………………………………………………………….…IV
Abbreviations list ……………………………….………………………………………….V

General introduction………..……………………………………………………………..1

Chapter I: Generalities …….……………………………………….……………………..3

I-Introduction ………….……………………………………………………………..4

II-Stat of art …………………………………………………………………………..4

III-IOT projects Comparison table….…………………………………….…………..5

III.1-Smart helmet for riders………………………………………..…………..5

III.2-Smart helmet for accidents……………………………………….………..5

III.3-Wearable sensor and IOT for better medicine FIT-WIT…….……………6

III.4-IOT based health monitoring for active and assisted living………………6

III.5-Foot wear based wearable system smart shoe………………….…………7

III.6-Wearable glove system………………………………………..…….……7

IV-Conclusion …………………………………………….………………..………..7

Chapter II: Helmet components; hardware description and design …………….…….8

I- Problematic and solution …………………….….….……………………….…….9

II- Electronic schema……………………………..….……………………….………9

III-Synoptic………………………………………….……………………….………10

IV-Hardware description …………………………..……………………….……….11

IV.1-Raspberry Pi…………………………………………………….………..11

IV.1.1-Definition……………………….……………………….……….11

IV.1.2- Raspberry Pi choice over Arduino and other Micro controllers…12

IV.2-CloudIoTCore……………………………………………...…………….12

IV.3-actuators…………………………………………….………...………….12

IV.3.1-Buzzer……………………………………………………………12

VII

IV.3.2-LED……………………………………………..……….………12

IV.4-Sensors……………………………………………………………………13

IV.4.1-Accelerometer and Gyroscope MPU-6050………………………13

IV.4.2-Temperature and Humidity Sensor DHT 22……..………………13

IV.4.3-Raspberry Pi Camera V1.3……………………..………………..13

V-Project hardware realization………………………….…………..……………….14

VI-conclusion………………………………………….…………………………….14

CHAPTER III: Helmet components; software description and tests ……………….15

I-Introduction………………………………………………………………………16

II-Software definition………………………………………………………………17

II.1-Rasbian: …………………………………………………………………17

II.2-Python…………………………………………………………………..17

II.3-Flask……………………………………………………………………..17

II.4-SQlite…………………………………………………………………….18

II.5- HTML,CSS, JavaScript , Node.js and Npm…………………….………18

II.5.1-HTML: Hypertext Markup Language …………………………18

II.5.2-CSS: Cascading Style Sheets ……………………………………19

II.5.3- Java Script……………………………………………………..19

II.5.4-Node.js………………………………………………………….19

II.5.5-Npm…………………………………………………………….19

III-Procedure steps…………………………………………………………………20

III.1-Rasbpian installation………………………………………………….20

III.2-Python3 installation……………………………………………………21

III.3-Enabling camera and i2c module……………………………………..22

III.4-Install Adafruit Library for Dht22…………………………………….22

III.5-Flask installation………………………………………………………22

III.6-SQlite local storage installation and configuration……………………24

III.7-Server, Data base and web page creation………………………………24

III.8-Local Network test…………………………………………………….24

VIII

IV-Conclusion……………………………………………………………………..25

Chapter IV:Realization of helmet application, controlled by a web server…………………26

I-Introduction: ………………………………………………………………….……..27

II-Sensors tests…………………………………………………………….…….…….28

II.1-Temperature and humidity sensor DHT22………………….…..…….……28

II.2-The Camera Module…………………………………………….……..……29

II.3-Accelerometer and Gyroscope i2c MPU-6050 ………………..……..…….30

III-Organizational Chart………………………………………………….……..……..32

IV-APPLICATION CODE……………………………………………………..……..33

IV.1-First Part: Data Base creation’s and rumpling’s Script……………….……33

IV.1.1-Data base creation…………………………………………..….….33

IV.1.2-Store DHT22 data into our table’s database……………….………34

IV.1.3-Camera Streaming ……………………………………….……….35

IV.2-Second Part: Lunching web application’s Script and camera and Data

representing……………………………………………………………………..35

IV.2.1-Flask application including camera, DHT22data and led control in

case of danger……………………………………………………………..35

IV.2.2-HTML AND CSS CODES………………………………..………36

IV.2.2.1-HTML code for the web server………………………………….36

IV.2.2.2-CSS code………………………………………………..……….37

IV.3-Third Part: Lunching Nodes JS Application and 3D simulator’s

Script…………………………………………………………………………….38

IV.3.1.Lunching the node.js application and show movement of the

accelerometer and gyroscope………………………………………..…….38

IV.3.2-Install Node.js and packages………………………………...…….38

IV.3.3 Node.js script………………………………………………………39

 IV.3.4-Result and discussions………………………………………………………….40

V-Conclusion………………………………………………………………………….40

General Conclusion………………………………………………………….……………..42

ANNEX……………………………………………………………………….…………….43

References……………………………………………………………………...…………..50

General introduction

1

General introduction

With the development of the Internet of Things, soldiers have become key nodes of

Information collection and resource control on the battlefield. It has become a trend to

Develop wearable devices with diverse functions for the military. The interconnection and

Collaborative decision-making between combat equipment and battlefield resources is one of

the characteristics of the Internet of Military Things (IoMT). The next generation of military

Networks will consist of densely deployed battlefield nodes, including human wearable

Devices like smart helmet, gilet, shoes and gloves. Command, control, communications, and

Intelligence systems will accelerate integration with the IoMT to influence military decision

Making in future wars.

Different smart sensors integrated into a soldier’s equipment provide a command center with

Multidimensional battlefield information Wearable sensors is the basic elements of military

Smart devices.

In our study we will be interested in this new trend of interconnected objects used to improve

the state of the soldiers in the battlefield. For this, we need to assure security, health and

dangers surrounding soldiers which are one of the major concerns of this project. Sensors

 implemented in wearable smart devices will help to collect information’s and send it

to the base station , soldiers using smart helmets, Gilets ,Gloves and suits will be connected

and controlled to avoid any type of dangers ahead, also it can be controller remotely by

military station base.

General introduction

2

The first chapter presents general introduction about harness the internet of things in military

Domain, and state of art; different projects of wearable IoT devices in health care and

Military domain and a comparative table contain information’s about it.

The second chapter carries about problematic and her proposed solution about the smart

wearable devices, in addition to synoptic and different sensors used in this project with

details.

The Third chapter consists of different information about software synoptic and the OS used

in Raspberry PI, the algorithm used to link different sensors and actuators with the MC and

The Python Script of the web page used to collect information From Raspberry Pi.

The Fourth chapter will present tests of algorithm application results given by different

hardware parts, data and video shown in monitor, discussion and comments about the

different results.

Finally, a general conclusion gives the evaluation performance of our system, ends by

possible ameliorations that we can provide to the project to improve the performances and

expand it in other application domain.

3

Chapter I:

Generalities

Chapter I: Generalities

4

I-Introduction:

Internet of Things (IoT) technology is the extension of internet network of things or objects.

Items then become connected and networked, such as connected watches, gloves and shoes...

The Internet of Things is growing up, benefiting from the creation of the Cloud Computing

therefore it can be applied in various fields. In this part, we will describe how IoT works, we

will mention and describe some IoT projects and compare them.

II-Stat of art:

Fig I.1-different IoT systems

Chapter I: Generalities

5

III-IOT projects Comparison table:

III.1-Smart helmet for riders: The conventional helmet is used for the safety of driver’s

head. It does not serve any other purposes in case of any untimely accidents. The major cause

for the loss of lives in accidents is due to the delay to reach the hospital. A smart helmet is a

special idea which makes motorcycle driving safer than before.

Fig I.2-smart helmet of riders with camera

III.2-Smart helmet for accidents: This helmet makes rider to feel comfortable as well as

with high protection and security. This smart helmet works on raspberry pi 3controller which

is WIFI based, acts as a station for the networking system. Bluetooth and raspberry pi 3 was

interfaced with cloud based services.

III.3-Wearable sensor and IOT for better medicine FIT-WIT:

E-health provides information on disease prevention, detecting early symptoms, and

monitoring the patient's condition based on medical parameters from a far distance. Internet of

things became the main concept in this system, which combines wearable sensors,

communication systems, and mobile user interfaces. Reliable and valid system, easily carried,

help the doctor to monitor patients from far distance expectantly to overcome the problems.

Chapter I: Generalities

6

Fig I.3-smart IoT system for old people

III.4-IOT based health monitoring for active and assisted living:

Health monitoring for active and assisted living is one of the paradigms that can use the IoT

advantages to improve the elderly lifestyle.

Fig I.4-IoT system of health monitoring and assisted living

III.5-Foot wear based wearable system smart shoe:

Footwear is an integral part of daily life. Embedding sensors and electronics in footwear for

various different applications, their systems range from simple step counting solutions to

more advanced systems intended for use in rehabilitation programs for disabled subjects.

Chapter I: Generalities

7

III.6-Wearable glove system:

Develop a system to detect driver stress events in real time. The driver’s stress is estimated by

the use of physiological signals and steering wheel motion analysis. The steering wheel

motion is analyzed by driver’s hand moving characteristic.

Fig I.5 -wearable glove smart system

IV-Conclusion:

In this chapter we have seen some different IoT project and we have compared them

especially in terms of application and the sensors it contains, we can notice clearly that the

majority of projects focus on medicine and sports domain but we rarely fin it in military one,

so we decided to work with our project in this field, and that what we going to do in next

chapters.

8

Chapter II: Helmet

components;

hardware description

and design

Chapter II: Helmet components; hardware description and design

9

I- Problematic and solution:

In any country, soldiers are always the frontline defense. Nevertheless, they always give their

best by defending the nation by risking their lives. It is always the case that a soldier is injured

on a battlefield barbarously. Threats surrounding soldiers and stuffs used like the Gilet or

Helmet don’t assure full protection, because of this reason they are supposed to compromise

about the security of their lives

The objective of this project is to provide an intelligent security system to help soldiers

dominate the battlefield with connected wearable objects of defense (helmet, Gilet, and suit),

providing security by monitoring the soldier health parameters and threats detection system

designed in it by using IOT

The goal here is to show the facilities offered by such an intelligent system.

II- Electronic schema:

We made this first initial schema for the first time but we couldn’t find all sensors so we

replaced some of them. We didn’t use a pulse rate sensor because of non-availability of

components, and because there is no digital input in the raspberry pi we needed an ADC ship

so we replaced LM35 by a DHT22 Humidity and temperature sensor.

Fig II.1- The first electronic schema of different hardware components

Chapter II: Helmet components; hardware description and design

10

buzzer

FigII.2-The final electronic schema of different hardware components

III-Synoptic:

FigII.3 - hardware synoptic of soldier’s Wearable device

Raspberry Pi 3B+

LEDS

Temperature

and humidity

sensorDHT22

Camera module

v1.3

Accelerometer

and gyroscope

MP6050

Power

Data base

Chapter II: Helmet components; hardware description and design

11

IV-Hardware description:

IV.1-Raspberry Pi:

IV.1.1-Definition: is a series of small single-board computers developed in the United

Kingdom by the Raspberry Pi Foundation to promote teaching of basic computer science in

schools and in developing countries. The original model became far more popular than

anticipated, selling outside its target market for uses such as robotics. It does not include

peripherals or cases. However, some accessories have been included in several official and

unofficial bundles. The organization behind the Raspberry Pi consists of two arms. The first

two models were developed by the Raspberry Pi Foundation. After the Pi Model B was

released, the Foundation set up Raspberry Pi Trading, with Eben Upton as CEO, to develop

the third model, the B+.
[7]

Fig II.4 -different ports of the Raspberry pi

IV.1.2-Raspberry Pi choice over Arduino and other Micro controllers:

Raspberry Pi and Arduino are quite different boards. Each board has its own advantages and

disadvantages , one of the main advantage that made us to choose the first one (RPI) is

powerfulness ,in which he capable of doing multiple tasks at a time like a computer and this is

the important thing that we need in this project where sensors need to be controlled from a

web page over internet , also Pi can be converted into a webserver and data base , beside that

Raspberry pi is 40 times faster than Arduino also as we have stated earlier that it has memory,

processor, USB ports, Ethernet port etc...

In term of networking Raspberry Pi has the built in Ethernet port, through which you can

directly connect to the networks. Even Internet can easily be run on Pi using some USB Wi-Fi

dongles. While in Arduino, it’s very difficult to connect to network. External hardware’s need

to be connected and properly addressed using code, to run network using Arduino. External

Chapter II: Helmet components; hardware description and design

12

Boards called “Shields” needs to be plugged in, to make Arduino, as functional as Pi, with a

proper coding to handle them.

In addition to all this, the table below will show the others advantages of Raspberry Pi over

Arduino:

Raspberry Pi 3 Arduino

It is a mini computer with Raspbian OS. It

can run multiple programs at a time.

Arduino is a microcontroller, which is a part

of the computer. It runs only one program

again and again.

t requires complex tasks like installing

libraries and software for interfacing sensors

and other components

It is very simple to interface sensors and

other electronic components to Arduino.

Raspberry Pi can be easily connected to the

internet using Ethernet port and USB Wi-Fi

dongles.

Arduino requires external hardware to

connect to the internet and this hardware is

addressed properly using code.

Raspberry Pi has 4 USB ports to connect

different devices.

Arduino has only one USB port to connect to

the computer.

The Recommended programming language is

python but C, C++, Python, ruby are pre-

installed.

Arduino uses C/C++.

512 MB memory 0.002 MB Memory

700 MHz Clock Speed 16 MHz clock speed

FigII.5-comparison between raspberry pi and Arduino

IV.2-CloudIoTCore: our IoT devices, Helmet and Gilet need storage to save information

and make data processing, which needs to be stored in data base better than device itself. In

our case we will use a local one.

IV.3-actuators:

IV.3.1-Buzzer: the buzzer has necessary role in the solider helmet it will make a warning

alarm if he is not in a secure position in the battlefield those tones of the buzzer depend on the

stat of the temperature sensor DHT22. Also the buzzer is mainly used to emit a sound when

temperature is more than 37.5.

IV.3.2-LED: two different LED colors are used in the smart helmet to notify the soldier

automatically in danger's case, in which the lights switching between white and red in specific

temperature conditions that will be clarified later, also it used by controllers in base station to

order the soldier in battlefield remotely via IOT local network considering and notify him

from a possible danger considering that they have the possibility to see the back view of

soldier via helmet camera.

Chapter II: Helmet components; hardware description and design

13

IV.4-Sensors:

IV.4.1-Accelerometer and Gyroscope MPU-6050: is a device that measure acceleration,

which is the rate of change of the velocity of an object. They measure in meters per second

squared (m/s
2
) or in G-forces (g). Accelerometers can measure acceleration on 3-axis. The

MPU6050 consist of 3-axis Gyroscope/Accelerometer with Micro Electro Mechanical System

(MEMS) technology.

MPU6050 sensor module is complete 6-axis Motion Tracking Device. It combines 3-axis

Gyroscope, 3-axis Accelerometer and Digital Motion Processor all in small package. It has

I2C bus interface to communicate with the microcontrollers.

The accelerometer sensor helps to calculate the acceleration, the position of the solider and his

state when he is walking, crouching or laying down when variation of the acceleration in the 3

axes is big that will detects the true state of the solider in battle field. The data will be sent to

the BS so they can treat precaution.
[8]

The accelerometer has 8 pins but in this case we will use only 4:

SCL: Serial Clock pin. Connect this pin to RPI SCL pin.

SDA: Serial Data pin. Connect this pin to RPI SDA pin.

GND: Ground pin. Connect this pin to ground connection.

VCC: Power supply pin. Connect this pin to +5V DC supply.

IV.4.2-Temperature and Humidity Sensor DHT 22: there are too many sensors that we can

use with the raspberry pi to measure the temperature of the solider in the battle field.

The DHT22 is a versatile and low-cost Temperature sensor that can also calculate the

temperature of an area.

This sensor has a relatively long transmission distance, allowing the sensor to transmit data

through wires up to 20m away from the Raspberry Pi.

As a bonus, the DHT22 is a digital sensor with an inbuilt analog to digital converter. The

converter makes it a lot easier to connect the sensor to the Raspberry Pi as you do not need to

deal with any additional chips.
[9]

IV.4.3-Raspberry Pi Camera V1.3: is a High Definition camera module compatible with all

Raspberry Pi models. The camera module connects to the Raspberry Pi board via the CSI

connector.

The camera V1.3it’s able to deliver a crystal clear 5MP resolution image or 1080p HD video

recording at 30fps.

The Camera used in the project by placing it behind the helmet to provide vision to base

station a back view of the solider on which will be directed and alerted to possible danger.

https://pimylifeup.com/raspberry-pi-adc/

Chapter II: Helmet components; hardware description and design

14

V-Project hardware realization:

After putting all components together we made the helmet of the soldier

FigII.6-construction of the smart helmet

VI-conclusion:

In this chapter we have focused on hardware side in which we have defined the available

sensors which we can use them with specific software and algorithms to solve the problematic

presented above.

15

CHAPTER III:

Helmet components;

software description

and tests

CHAPTER III: Helmet components; software description and tests

16

I-introduction:

this chapter focus on application , we will show in detailed way the planning and methods that

we used to build an local IoT network consisting of server, data base and web page using

raspberry pi 3 B+ , python , Flask, SQLite , Html , CSS ,JavaScript, Node.js and npm

following procedure bellow :

Procedure organizational chart:

Raspbian installation

Python 3 installation

Enabling camera and

i2c module

Install Adafruit Library

for Dht 22

Flask installation

SQLite local storage

installation and

configuration

Server, Data base and

web page creation

Local network test

CHAPTER III: Helmet components; software description and tests

17

II-Software definition:

II.1-Rasbian:

is a free operating system based on Debian optimized for the Raspberry Pi hardware. An

operating system is the set of basic programs and utilities that make your Raspberry Pi run.

However, Raspbian provides more than a pure OS: it comes with over 35,000 packages; pre-

compiled software bundled in a nice format for easy installation on your Raspberry Pi.

The initial build of over 35,000 Raspbian packages, optimized for best performance on the

Raspberry Pi, was completed in June of 2012. However, Raspbian is still under active

development with an emphasis on improving the stability and performance of as many Debian

packages as possible.
 [10]

II.2-Python:

is an interpreted, object-oriented, high-level programming language with dynamic semantics.

Its high-level built in data structures, combined with dynamic typing and dynamic binding;

make it very attractive for Rapid Application Development, as well as for use as a scripting or

glue language to connect existing components together. Python's simple, easy to learn syntax

emphasizes readability and therefore reduces the cost of program maintenance. Python

supports modules and packages, which encourages program modularity and code reuse. The

Python interpreter and the extensive standard library are available in source or binary form

without charge for all major platforms, and can be freely distributed.

Often, programmers fall in love with Python because of the increased productivity it provides.

Since there is no compilation step, the edit-test-debug cycle is incredibly fast. Debugging

Python programs is easy: a bug or bad input will never cause a segmentation fault. Instead,

when the interpreter discovers an error, it raises an exception. When the program doesn't catch

the exception, the interpreter prints a stack trace. A source level debugger allows inspection of

local and global variables, evaluation of arbitrary expressions, setting breakpoints, stepping

through the code a line at a time, and so on. The debugger is written in Python itself,

testifying to Python's introspective power. On the other hand, often the quickest way to debug

a program is to add a few print statements to the source: the fast edit-test-debug cycle makes

this simple approach very effective.
[11]

II.3-Flask: This HTTP server has been developed in Python3, using a popular framework

called Flask; it is classified as a micro framework because it does not require particular tools

or libraries. It has no database abstraction layer, form validation, or any other components

where pre-existing third-party libraries provide common functions. However, Flask supports

extensions that can add application features as if they were implemented in Flask itself.

Extensions exist for object-relational mappers, form validation, and upload handling, various

open authentication technologies and several common framework related tools. Extensions

are updated far more frequently than the core Flask program.
[12]

CHAPTER III: Helmet components; software description and tests

18

Flask choice:

There are two well-known web frameworks developed for Python: aiohttp and

Flask. We chose the latter because it included more interesting login support, but the project

could have been developed with either of those. Actually, Flask is a micro framework, but it

supports extensions for extra functionalities. It is also interesting for this project the fact that it

uses html templates, which will be explained later.

.

II.4-SQlite: is a relational database management system (RDBMS) contained in a Library. In

contrast to many other database management systems, SQLite is not a client–server database

engine. Rather, it is embedded into the end program.

SQLite is ACID-compliant and implements most of the SQL standard, generally following

PostgreSQL syntax. However, SQLite uses a dynamically- and weakly-typed SQL syntax that

does not guarantee the domain integrity. This means that one can, for example, insert a string

into a column defined as an integer. SQLite will attempt to convert data between formats

where appropriate, the string "123" into an integer in this case, but does not guarantee such

conversions, and will store the data as-is if such a conversion is not possible.

There are many options in the market and probably the 2 most used with Raspberry Pi and

sensors are MySQL and SQLite. Here, SQLite is probably the most suitable choice, because it

is server less, lightweight, open source and supports most SQL code.

II.5- HTML, CSS, JavaScript, Node.js and Npm:

We have to give instructions to the computer. It's not enough just type the text that should

appear on the screen (as we would in a treatment text); we must also indicate where to place

this text, insert images, make links between pages, etc.

II.5.1-HTML: Hypertext Markup Language is the standard markup language for

documents designed to be displayed in a web browser. It can be assisted by technologies such

as Cascading Style Sheets (CSS) and scripting languages such as JavaScript.

Web browsers receive HTML documents from a web server or from local storage and render

the documents into multimedia web pages. HTML describes the structure of a page

semantically and originally included cues for the appearance of the document.

HTML elements are the building blocks of HTML pages. With HTML constructs, images and

other objects such as interactive forms may be embedded into the rendered page. HTML

provides a means to create structured documents by denoting structural semantics for text

such as headings, paragraphs, lists, links, quotes and other items. HTML elements are

delineated by tags, written using angle brackets. Tags such as and <input/> directly

introduce content into the page. Other tags such as <p> surround and provide information

about document text and may include other tags as sub-elements. Browsers do not display the

HTML tags, but use them to interpret the content of the page.

HTML can embed programs written in a scripting language such as JavaScript, which affects

the behavior and content of web pages. Inclusion of CSS defines the look and layout of

content. The World Wide Web Consortium (W3C), former maintainer of the HTML and

https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Client%E2%80%93server
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Weakly_typed
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Data_integrity#TYPES
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Browser_engine
https://en.wikipedia.org/wiki/HTML_element
https://en.wikipedia.org/wiki/HTML_element#Images_and_objects
https://en.wikipedia.org/wiki/Fieldset
https://en.wikipedia.org/wiki/Structured_document
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Hyperlink
https://en.wikipedia.org/wiki/Bracket#Angle_brackets
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium

CHAPTER III: Helmet components; software description and tests

19

current maintainer of the CSS standards, has encouraged the use of CSS over explicit

presentational HTML since 1997.[13]

II.5.2-CSS: Cascading Style Sheets is a style sheet language used for describing the

presentation of a document written in a markup language like HTML. CSS is a cornerstone

technology of the World Wide Web, alongside HTML and JavaScript.

CSS is designed to enable the separation of presentation and content, including layout, colors,

and fonts. This separation can improve content accessibility, provide more flexibility and

control in the specification of presentation characteristics, enable multiple web pages to share

formatting by specifying the relevant CSS in a separated file, and reduce complexity and

repetition in the structural content.

Separation of formatting and content also makes it feasible to present the same markup page

in different styles for different rendering methods, such as on-screen, in print, by voice (via

speech-based browser or screen reader), and on Braille-based tactile devices. CSS also has

rules for alternate formatting if the content is accessed on a mobile device.

The name cascading comes from the specified priority scheme to determine which style rule

applies if more than one rule matches a particular element. This cascading priority scheme is

predictable.
[14]

II.5.3- Java Script: JavaScript is a text-based programming language used both on the client-

side and server-side that allows you to make web pages interactive. Where HTML and CSS

are languages that give structure and style to web pages, JavaScript gives web pages

interactive elements that engage a user.

Incorporating JavaScript improves the user experience of the web page by converting it from

a static page into an interactive one. To recap, JavaScript adds behavior to web pages.

JavaScript is mainly used for web-based applications and web browsers. But JavaScript is

also used beyond the Web in software, servers and embedded hardware controls.
 [15]

II.5.4-Node.js: is an open-source, cross-platform, JavaScript runtime environment

(Framework) that executes JavaScript code outside a web browser. Node.js lets developers

use JavaScript to write command line tools and for server-side scripting running scripts

server-side to produce dynamic web page content before the page is sent to the user's web

browser. Consequently, Node.js represents a "JavaScript everywhere" paradigm, unifying

web-application development around a single programming language, rather than different

languages for server- and client-side scripts.
[16]

II.5.5-Npm: is a package manager for the JavaScript programming language. It is the default

package manager for the JavaScript runtime environment Node.js. It consists of a command

line client, also called npm, and an online database of public and paid-for private packages,

called the npm registry. The registry is accessed via the client, and the available packages can

be browsed and searched via the npm website. The package manager and the registry are

managed by npm, Inc.

https://en.wikipedia.org/wiki/Style_sheet_language
https://en.wikipedia.org/wiki/Presentation_semantics
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Page_layout
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Typeface
https://en.wikipedia.org/wiki/Accessibility
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Screen_reader
https://en.wikipedia.org/wiki/Braille_display
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/Dynamic_web_page
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Online_database

CHAPTER III: Helmet components; software description and tests

20

III-Procedure steps:

III.1-Rasbpian installation:

Step 1: Formatting the microSD card:

The initial step was to reformat the microSD, because mostly new microSD cards come with

some irrelevant files on them. Therefore reformatting it completely deletes and clears all files

on the microSD.

Step 2: Download and installing Raspbian

Raspbian was then downloaded and installed onto the microSD using a disk imager. Once it

this was done, the microSD card was plugged it into the Raspberry Pi. Once the installation

was completed the Raspbian automatically began to boot. The operating system was then

configured.

Step 3: Initializing Raspberry Pi

The microSD card was inserted into the card socket of the raspberry Pi 3b+. An RJ45

Ethernet cable was used to connect the Raspberry Pi to the laptop. Opening the SSH port with

putty and install the VNC Server on it then we used a viewer to show Raspberry pi desktop

using the local IP address of raspberry pi. Alternatively, Wi-Fi adapter of the Raspberry Pi

could have been used to connect the system to the network The 5.1 volts 2.5 amps micro USB

power supply was used power up the Raspberry Pi to boot it.

Fig-III.1- installing VNC server on raspberry pi

Step 5: Configuration of Raspberry Pi 3

Upon completion of the boot process, the location, date, and time is done were configured to

suit the local setting using the command:

pi@raspberrypi:~ $ sudo raspi-config

CHAPTER III: Helmet components; software description and tests

21

-After reconfiguring the Raspberry Pi, the system was rebooted. Once the Raspberry Pi was

restarted, it was ready to be used.

Fig-III.2 configuration interface of the raspberry pi

III.2-Python3 installation: It might not be necessary to update the Raspbian, but we do it to

avoid problems we use the following code to update your Raspbian:

pi@raspberrypi:~ $ sudo apt-get update

Once the update process is done, and Raspbian is already up to date, we can run the following

code to start the installation process of Python 3:

pi@raspberrypi:~ $ sudo apt-get install python3-pip

Fig III.3 updating Raspbian and installing Python3

CHAPTER III: Helmet components; software description and tests

22

III.3-Enabling camera and i2c module:

I2C is a very commonly used standard designed to allow one chip to talk to another. So, since

the Raspberry Pi can talk I2C we can connect it to a variety of I2C capable chips and

modules. The I2C bus allows multiple devices to be connected to your Raspberry Pi, each

with a unique address that can often be set by changing jumper settings on the module. It is

very useful to be able to see which devices are connected to your Pi as a way of making sure

everything is working.

to install i2c support and camera module trough raspberry pi configuration interface we use

the following command :

pi@raspberrypi:~ $ sudo raspi-config

Fig III.4 -enabling i2c protocol and Camera module

III.4-Install Adafruit Library for Dht22: Using pip, we will install Adafruit’s DHT library

to the Raspberry Pi We will be using this Python library to interact with our DHT22

Humidity/Temperature sensor. We used following command to install the DHT library to

Raspberry Pi.

pi@raspberrypi:~ $ sudopip3 install Adafruit_DHT

III.5-Flask installation: Modules can be downloaded as packages from the Python Package

Index-(Pypi) and installed on the raspberry pi automatically. To install the module we use the

command:

pi@raspberrypi:~ $ pip3 install flask

https://github.com/adafruit/DHT-sensor-library
https://pypi.python.org/pypi
https://pypi.python.org/pypi

CHAPTER III: Helmet components; software description and tests

23

-After installing flask we can create the local web page and display it on the browser using the

IP address of the raspberry pi with the port 80:

Example for a local web page using flask that shows “Hello World”:

First Script: Algorithm for flask application test

After creating the python3 code using flask we can run it in console using the following

command and see the results in web browser:

pi@raspberrypi:~ $ sudo pyhton3 testflask.py

FigIII.5-result of flask application

CHAPTER III: Helmet components; software description and tests

24

III.6-SQlite local storage installation and configuration: the general idea will be collect data

from the sensors and store them in a database that we create after installing SQLite3 using the

command:

pi@raspberrypi:~ $ sudo apt-get install sqlite3

III.7-Server, Data base and web page creation

For that we create the data base using SQLite3 in the console using the command bellow after

that we will create a table store data in it.

The previous table is created using the SQlite3 shell:

pi@raspberrypi:~ $ sqlite3database.db

sqlite>CREATE TABLE data1 (data1,data2);

sqlite>INSERT INTO data VALUES (1,10);

III.8-Local Network test:

Second Script: Local network test using Flask and sqlite3

Now our table is created we can use the database with flask to show values in the web page

python3 using flask and sqlite3 libraries:

-the data received will be showed in the web browser page after lunching the flask server:

CHAPTER III: Helmet components; software description and tests

25

Fig III.6- result of the web application using flask and Sqlite3

The index.html files used in this web page:

<head>

<title>exeample for sqlite and flask</title>

</head>

<body>

 <h1>data stored in data.db</h1>

 <h3> data1 ==> {{ data1 }} </h3>

 <h3> data2 ==> {{ data2 }} </h3>

</body>

</html>

IV-conclusion:

The design of a project can be done in several ways to meet the same specifications. Choosing

the right solution is essential and depends on several criteria.

Choosing the correct methods was depending of available sensors, information and acquired

knowledge in term of software and programming.

We explained in this chapter the method that we will follow to solve the problematic and we

tested it with some basic application, so we can use them to concept our project.

26

Chapter IV:

Realization of helmet

application,

controlled by a web

server

Chapter IV: Realization of helmet application, controlled by a web

server

27

I-Introduction:

The final chapter in out thesis will contain the most important part of project in which we

will test our equipment’s one by one and collect them in final program that will be displayed

detail , also all other programs that we used in this project .

In the other hand we will discuss the results, and based on it we’ll talk about how far we can

go if we keep progressing on this helmet in future, finally we’ll complete this chapter with

final conclusion.

FigIV.1 -The software Synoptic of wearable IoT helmet

Chapter IV: Realization of helmet application, controlled by a web

server

28

II-Sensors tests: the following figure shows the real position of sensors in the helmet

FigIV.2-Position of different sensors

II.1-temperature and humidity sensor DHT22:

After installing Adafruit library in the previous chapter, now we can use the sensor and

measure the temperature and humidity:

Third Script: DHT22 Test application

Chapter IV: Realization of helmet application, controlled by a web

server

29

After running the code using python3 we can see that our sensor starts to measure temperature

of the solider in Celsius. The result will be shown and displayed in the terminal print screen,

the results above show the Instantaneous temperature and renewed each second.

FigIV.3-Result of DHT22 test using Python3

II.2-the Camera Module:

After enabling the camera module in configuration interface now we can plug it in the CSI

connector and use it:

Fig IV.4 Raspberry pi CSI port for the Camera v1.3

Chapter IV: Realization of helmet application, controlled by a web

server

30

In Raspbian there are built-in functions for the camera module .With those commands itis

possible to take pictures and record videos. One of these built-in functions or commands is

called “raspistill” for taking pictures and “raspivid” for videos.

raspistill -o battlefield.jpg

-We can record videos using the following command:

raspivid –o battlefield.h264

After typing the command above into terminal a preview window is started up. The preview

window is running for5seconds, and then Raspberry pi takes the picture or the video and

saves it. We used –o in the command for specifying the output filename

The are many possible options we can use such as –w for width, -h for height and –q for

quality.

Fourth Script: camera module test

We can control the camera via the command line or via a script in python

Chapter IV: Realization of helmet application, controlled by a web

server

31

II.3-Accelerometer and Gyroscope i2c MPU-6050:

After installing the SMBUS library that provides the Circuit Python support and after

enabling I2C on platform and verifying that Python 3is running.

We can use the following code to import the necessary modules and initialize the I2C

connection with the sensor:

Fifth Script: MPU-6050 accelerometer gyroscope test

-The result after running the code using python:

FigIV.5 -Result of the test of Gyroscope and accelerometer in 6-axis

Chapter IV: Realization of helmet application, controlled by a web

server

32

III-Organizational Chart :

FigIV.6-algorithm of the application

Chapter IV: Realization of helmet application, controlled by a web

server

33

IV-APPLICATION CODE:

- By using the methods that we mentioned in previous chapter , now our sensor results and

camera Instantaneous pictures can be uploaded via local network to the station control

base to be available to viewed and simple to analyzed , below we will explain how we

applied Chapter 3 methods with our sensors captures to obtain the final results .Capture

real data (air temperature and relative humidity) using a DHT22 sensor; Load those data

on a local database, built with SQLite3

To facilitate the work, we will representing our final code by divide it into 3 parts , each one

has its own code attached , by following the procedure bellow :

IV.1-First Part: Data Base creation’s and rumpling’s Script

IV.1.1-creating data base:

First we need to create our data base using sqlite3 for saving the dht22received dataat the

current time:

import sqlite3 as lite

import sys

con = lite. Connect('sensorsData.db')

with con:

cur = con.cursor()

cur.execute("DROP TABLE IF EXISTS DHT_data")

cur.execute("CREATE TABLE DHT_data(timestamp DATETIME, temp NUMERIC, hum

NUMERIC)")

Data Base creation’s and rumpling’s Script

Lunching web application’s Script and camera and Data representing

Lunching Nodes JS Application and 3D simulator’s Script

Chapter IV: Realization of helmet application, controlled by a web

server

34

IV.1.2-store DHT22 data into our table’s database:

After creating our database we call a function that will return the captured data by the DHT22

sensor. Take those data (temperature and humidity) and passing them to another function that

insert them, together with actual date and time, to our table. The program will continuously

capture data, feeding them in our database. We included a buzzer that will warn the soldier if

the temp exceed 37.5 (body’s normal temperature)

import time

import sqlite3

importAdafruit_DHT

importRPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(26,GPIO.OUT)

BUZZER=26

dbname='sensorsData.db'

sampleFreq = 5 # time in seconds ==> Sample each 5sec

get data from DHT sensor

defgetDHTdata():

 DHT22Sensor = Adafruit_DHT.DHT22

DHTpin = 4

hum, temp = Adafruit_DHT.read_retry(DHT22Sensor, DHTpin)

if hum is not None and temp is not None:

hum = round(hum)

if temp >37.5:

GPIO.output(BUZZER,1)

else:

GPIO.output(BUZZER,0)

temp = round(temp, 1)

return temp, hum

log sensor data on database

deflogData (temp, hum):

conn=sqlite3.connect(dbname)

curs=conn.cursor()

curs.execute("INSERT INTO DHT_data values(datetime('now'), (?), (?))", (temp, hum))

conn.commit()

conn.close()

main function

def main():

while True:

temp, hum = getDHTdata()

logData (temp, hum)

time.sleep(sampleFreq)

------------ Execute program

main()

Chapter IV: Realization of helmet application, controlled by a web

server

35

IV.1.3-Camera Streaming:

For this code we will initialize it for our flask application this code will work as a library for

our camera’s functions such as frames rotation and camera resolution.

Seventh Script: The Camera library algorithm

IV.2-Second Part: Lunching web application’s Script and camera and Data

representing

The intelligent helmet that we made as we mentioned in previous chapters contain camera

module which capture sequential photos in the second , using the script bellow we can send

those frames to the control base station so we can follow the state of the soldier in real time

and protect him against attacks behind him. Also we programmed an control panel used by

the base station for backing up soldier, this control panel uses 2 lighting LEDs make them

blink On/Off in case of detecting possible danger Those two property are presented in one

script attached bellow

IV.2.1-Flask application including camera, DHT22data and led control in

case of danger:

Chapter IV: Realization of helmet application, controlled by a web

server

36

Sixth Script: Flask web application

IV.2.2-HTML AND CSS CODES:

Sensor’s revived data can be dense and disorganized , that can be very difficult to be

read by controllers in station base and that results disturbance and slow in making the

decisions and the orders, for that reason we designed an simple interface using HTML

and CSS Code bellow, that provide in single page as simple way:

-The Battlefield arena’s live Streaming

-Soldier instantaneous temperature

-LED and Buzzer control panel

IV.2.2.1-HTML code for the web server:

<head>

<link rel="stylesheet" href='../static/style.css'/>

</head>

<body>

<h3>DHT22 TEMPERATURE ==> {{ temp }} oC</h3>

<h3> Last Sensors Reading: {{ time }} ==><ahref="/"class="button">REFRESH

<h3>leds</h3>

<h3><imgsrc="{{ url_for('video_feed') }}" width="300" height="300"></h3>

<h1>Actuators</h1>
 </h3>

 <h3>

 Turn on red LED ==>

 TURN ON

 TURN OFF

</body>

</html>

Chapter IV: Realization of helmet application, controlled by a web

server

37

IV.2.2.2-Web server interface: using html code of our web application showed in page

36 we get the following result:

FigIV.7-base station interface shows temperature, video in real time and control panel

-Our web application interface will now contain the data base information,

It shows the soldier temperature in real time and the last time which the sensors captures

Also we can see live stream of battlefield on the same page , and we can control the LEDs to

inform the soldier in dangers cases

Chapter IV: Realization of helmet application, controlled by a web

server

38

IV.3-Third Part: Lunching Nodes JS Application and 3D simulator’s Script

- To track soldier’s body, if he’s up,down, crouching …, which inform us that the soldier

still awake and alive, we used a node.js with specific code bellow to design an simple

3D anthropomorphic, simulator to soldier body, related to Gyroscope moves which is

also related to soldier’s moves. This simulation will be added to the principal control

interface of base station which we made before using HTML and Css.

IV.3.1lunching the node.js application and show movement of the accelerometer and

gyroscope:

After detecting the accelerometer address: At address 0x68 (hexadecimal) there is an I2C

device - in our case it is the MPU 6050 gyroscope.

pi@raspberrypi:~ $ sudo i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

IV.3.2-Install Node.js and packages:

Before they can start the server, we first have to install Node.JS and the package manager

npm :

pi@raspberrypi:~ $ sudo apt-get install gitnodejsnpm --yes

After that we can clone the GitHubprogram and go to the directory and download the required

libraries for our accelerometer using npm node.js and after that we install the nmp to our

raspberry pi

pi@raspberrypi:~ $ git clone https://github.com/tutRPi/Raspberry-Pi-WebGL-Gyroscope

pi@raspberrypi:~ $ install npm

Chapter IV: Realization of helmet application, controlled by a web

server

39

IV.3.3 node.js script:

var express = require('express');

vargyroscopeController = require('./controllers/gyroscopeController');

require('dotenv').config()

var app = express();

app.use(express.static('public'));

app.get('/', function (req, res) {

res.sendfile('index.html');

});

app.get('/api/data', gyroscopeController.data);

app.listen(process.env.PORT || 3000 , function(){

console.log("Listening on port " + (process.env.PORT || 3000))

})

-Our application will be on port 3000 on browser we use the command:

pi@raspberrypi:~/mputest $ node index.js

-the result of our 3D anthropomorphic system is shown in the next figure:

FigIV.8-Soldier movements on 6-axis using a simple 3D anthropomorphic in real time

Chapter IV: Realization of helmet application, controlled by a web

server

40

IV.3.4-Result and discussions:

The gyroscope and accelerometer proved to be a highly effective motion sensor for physical

activity Assessment, the anthropomorphic simulates the same moves of soldier (gyroscope

sensor on helmet) behavior if he is standing or prone based on X, Y and Z axis in data

processing as shown in figures bellow, The mount of acceleration in Z axe shows if the

soldier is falling too so the base station can send an alert via the control panel. Meanwhile we

are unable to differentiate both jogging and walking pattern due to the ability of the sensor for

directing direction and since both jogging and walking activity are conducted in the same

direction. The mount of acceleration in Z axe shows if the soldier is falling too so the base

station can send an alert via the control panel.

 FigIV.9-Standing position of the soldier FigIV.10-Left slanted position of soldier

V-Conclusion:

By using some electronic materials and tools ,and after tests we have fabricated an IOT

object, a smart helmet that help the soldier by scanning and covering the battlefield area and

we have succeeded to connect it remotely via local network to military base station that can

make decisions and order the soldier via a server web .

The biggest problem we faced in this project is the acquisition of electronic material because

of the exceptional circumstances of Corona pandemic, So that was supposed to add a pulse

Chapter IV: Realization of helmet application, controlled by a web

server

41

rate sensor to the helmet for more soldier’s health tracking also an reliable temperature sensor

with big resistance, so we were forced to satisfied with the available sensors and materials to

success this experience hoping to having the chance to develop it in the future in other best

conditions.

 In conclusion we can say that the IOT objects and the smart helmet especially are

revolutionaries systems destined to evolve even further in the future.

General Conclusion

42

General Conclusion:

In this context and as part of our master's formation in telecommunications at

Badji Mokhtar University, each student must participate in the PFE.

We chose between several themes and then formed groups for each theme, and to put

By applying our acquired knowledge and improving our skills we undertook to work on IOT

objects which addresses the design and integration of a smart soldier helmet

Our study allowed us to better understand the components and technologies affected by the

field of the Internet of Things.

In our project we have implemented a system Embodied in a smart helmet connected via a

local network remotely to a base control station, represented in interface web, it can receive

the health status of the soldier who wearing that helmet and the information of battle field

which covered by its camera, also the station can send orders and inform the soldier in

dangers cases, so it works in bidirectional way and remotely, and this is the main importance

of internet of things.

We were not content with just the theoretical side, but we moved to the practical one also, in

which we designed a real helmet that works with high efficiency.

During this work we have employed several modules that we have studied in previous years

such as: IP routing, broadband networks, Linux, web technologies, basic electronics,

Documentary research and thesis design.

In terms of skills acquired, this project allowed us to:

 Know how to program a microcontroller (Raspberry Pi)

 Know the PYTHON software and be able to make the connection between the

Raspberry card and this software to acquire data and also to control in return.

 Create an HTML page and server using python and flask , which are very helpful in

learning data, image processing ...

 To face practical problems, real problems not only in theory,

 Know how to manage them and most importantly find reliable solutions to meet these

problematic.

This did not prevent having encountered many constraints and obstacles in particular the lack

of electronic components, which was limited because of Covid-19 pandemic.

We also encountered programming and configuration problems of the various modules

electronic because it was our first experience in this field.

Finally, we hope through our work to provide practical validation of these Techniques and

donate a good cause to better explore this area of the Internet of Things.

ANNEX

43

ANNEX:
The First Script:

Fromflask import Flask

app = Flask(__name__)

@app.route('/')

Def index():

return'<h1>Hello World!</h1>'

if __name__ == '__main__':

app.run(debug=True, host='0.0.0.0',port=80)

The Second Script:

from flask import Flask, render_template, request

app = Flask(__name__)

import sqlite3

Retrieve data from database

defgetData():

 conn=sqlite3.connect('../data.db')

 curs=conn.cursor()

 for row in curs.execute("SELECT * FROM data1"):

 data1 = row[0]

 data2 = row[1]

 conn.close()

 return data1, data2

main route

@app.route("/")

def index():

 data1,data2 = getData()

 templateData = {

 'data1': data1,

 'data2': data2,

 }

 returnrender_template('index.html', **templateData)

@app.route("/page1")

defpage1():

returnrender_template("page1.html")

if __name__ == "__main__":

app.run(host='0.0.0.0', port=80, debug=False)

The Third Script:

ANNEX

44

importAdafruit_DHT

DHT_SENSOR = Adafruit_DHT.DHT22

DHT_PIN = 4

while True:

humidity, temperature = Adafruit_DHT.read_retry(DHT_SENSOR, DHT_PIN)

if humidity is not None and temperature is not None:

print("The temparature of soldier is={0:0.1f}*C".format(temperature, humidity))

else:

print("Failed to retrieve data from humidity sensor")

The Fourth Script:

frompicamera import PiCamera

from time import sleep

camera = PiCamera()

camera.start_preview()

sleep(5)

camera.stop_preview()

The Fifth Script:

import smbus #import SMBus module of I2C
from time import sleep #import

#some MPU6050 Registers and their Address
PWR_MGMT_1 = 0x6B
SMPLRT_DIV = 0x19
CONFIG = 0x1A
GYRO_CONFIG = 0x1B
INT_ENABLE = 0x38
ACCEL_XOUT_H = 0x3B
ACCEL_YOUT_H = 0x3D
ACCEL_ZOUT_H = 0x3F
GYRO_XOUT_H = 0x43
GYRO_YOUT_H = 0x45
GYRO_ZOUT_H = 0x47
def MPU_Init():
 #write to sample rate register
 bus.write_byte_data(Device_Address, SMPLRT_DIV, 7)

 #Write to power management register

ANNEX

45

 bus.write_byte_data(Device_Address, PWR_MGMT_1, 1)

 #Write to Configuration register
 bus.write_byte_data(Device_Address, CONFIG, 0)

 #Write to Gyro configuration register
 bus.write_byte_data(Device_Address, GYRO_CONFIG, 24)

 #Write to interrupt enable register
 bus.write_byte_data(Device_Address, INT_ENABLE, 1)

def read_raw_data(addr):
 #Accelero and Gyro value are 16-bit
 high = bus.read_byte_data(Device_Address, addr)
 low = bus.read_byte_data(Device_Address, addr+1)

 #concatenate higher and lower value
 value = ((high << 8) | low)

 #to get signed value from mpu6050
 if(value > 32768):
 value = value - 65536
 return value

bus = smbus.SMBus(1) # or bus = smbus.SMBus(0) for older version boards
Device_Address = 0x68 # MPU6050 device address

MPU_Init()

print (" Reading Data of Gyroscope and Accelerometer")

while True:

 #Read Accelerometer raw value
 acc_x = read_raw_data(ACCEL_XOUT_H)
 acc_y = read_raw_data(ACCEL_YOUT_H)
 acc_z = read_raw_data(ACCEL_ZOUT_H)

 #Read Gyroscope raw value
 gyro_x = read_raw_data(GYRO_XOUT_H)
 gyro_y = read_raw_data(GYRO_YOUT_H)
 gyro_z = read_raw_data(GYRO_ZOUT_H)

 #Full scale range +/- 250 degree/C as per sensitivity scale factor
 Ax = acc_x/16384.0
 Ay = acc_y/16384.0

ANNEX

46

 Az = acc_z/16384.0

 Gx = gyro_x/131.0
 Gy = gyro_y/131.0
 Gz = gyro_z/131.0

 print ("Gx=%.2f" %Gx, u'\u00b0'+ "/s", "\tGy=%.2f" %Gy, u'\u00b0'+ "/s", "\tGz=%.2f"
%Gz, u'\u00b0'+ "/s", "\tAx=%.2f g" %Ax, "\tAy=%.2f g" %Ay, "\tAz=%.2f g" %Az)
 sleep(1)

The sixth script:

Calling libraries and initializing part

from flask import Flask, render_template, request, Response

app = Flask(__name__)

fromcamera_pi import Camera

import sqlite3

importRPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

#define actuators GPIOs

ledRed = 18

ledYlw = 20

#initialize GPIO status variables

ledRedSts = 0

ledYlwSts = 0

Define led pins as output

GPIO.setup(ledRed, GPIO.OUT)

GPIO.setup(ledYlw, GPIO.OUT)

turnleds OFF

GPIO.output(ledRed, GPIO.LOW)

GPIO.output(ledYlw, GPIO.LOW)

ANNEX

47

Retrieve data from database

defgetData():

 conn=sqlite3.connect('../sensorsData.db')

 curs=conn.cursor()

 for row in curs.execute("SELECT * FROM DHT_data ORDER BY

timestamp DESC LIMIT 1"):

 time = str(row[0])

 temp = row[1]

 hum = row[2]

 conn.close()

 return time, temp, hum

DHT22 data

@app.route("/")

def index():

 time, temp, hum = getData()

 templateData = {

 'time': time,

 'temp': temp,

 'hum': hum

 }

 returnrender_template('index.html', **templateData)

Camera module surveillance

@app.route('/camera')

def cam():

 """Video streaming home page."""

 timeNow = time.asctime(time.localtime(time.time()))

 templateData = {

 'time': timeNow

 }

 returnrender_template('camera.html', **templateData)

def gen(camera):

"""Video streaming generator function."""

while True:

frame = camera.get_frame()

yield (b'--frame\r\n'

b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

@app.route('/video_feed')

defvideo_feed():

"""Video streaming route. Put this in the src attribute of an img tag."""

return Response(gen(Camera()),

ANNEX

48

mimetype='multipart/x-mixed-replace; boundary=frame')

Leds control

@app.route("/leds")

def led():

 # Read Sensors Status

 ledRedSts = GPIO.input(ledRed)

 ledYlwSts = GPIO.input(ledYlw)

 templateData = {

 'title' : 'GPIO output Status!',

 'ledRed' : ledRedSts,

 'ledYlw' : ledYlwSts,

 }

 returnrender_template('index.html', **templateData)

@app.route("/<deviceName>/<action>")

defaction(deviceName, action):

 ifdeviceName == 'ledRed':

 actuator = ledRed

 ifdeviceName == 'ledYlw':

 actuator = ledYlw

 if action == "on":

 GPIO.output(actuator, GPIO.HIGH)

 if action == "off":

 GPIO.output(actuator, GPIO.LOW)

 ledRedSts = GPIO.input(ledRed)

 ledYlwSts = GPIO.input(ledYlw)

 templateData = {

 'ledRed' : ledRedSts,

 'ledYlw' : ledYlwSts,

 }

 returnrender_template('index.html', **templateData)

if __name__ == "__main__":

app.run(host='0.0.0.0', port=80, debug=False

The seventh Script:

import time

importio

ANNEX

49

import threading

importpicamera

class Camera(object):

thread = None # background thread that reads frames from camera

frame = None # current frame is stored here by background thread

last_access = 0 # time of last client access to the camera

def initialize(self):

ifCamera.thread is None:

Camera.thread = threading.Thread(target=self._thread)

Camera.thread.start()

whileself.frame is None:

time.sleep(0)

defget_frame(self):

Camera.last_access = time.time()

self.initialize()

returnself.frame

 @classmethod

def _thread(cls):

withpicamera.PiCamera() as camera:

camera.resolution = (320, 240)

camera.hflip = True

camera.vflip = True

camera.start_preview()

time.sleep(2)

stream = io.BytesIO()

for foo in camera.capture_continuous(stream, 'jpeg',

use_video_port=True):

stream.seek(0)

cls.frame = stream.read()

stream.seek(0)

stream.truncate()

iftime.time() - cls.last_access> 10:

break

References

50

References :

[1] Bessy Benny, Gissmon Babu , Lijamol Mathew, Minna Eldho, Jinto Mathew, Robin George,“Smart Helmet,

an intelligent safety for riders using Raspberry Pi and sensors for Drunken drive with GPS tracking” , IJAREEIE

, Vol. 8, Issue 6, June 2019.

[2] Mr.Sethuram rao, Vishnupriya.S.M, Mirnalini.Y , Padmapriya.R.S , ” THE HIGH SECURITY SMART

HELMET USINGINTERNET OF THINGS”,IJPAM, Volume 119. 14439-14450, No 12 2018

[3] Musab Ali,Arisa Olivia,Mouhammad Saad,Sidiq Hidayat, “Wearable sensor and internet of things

technology for better medical sciece“,IJET,January 2019

[4]Ahmed Abdelgawad,Ahmed Khattab,Kumar Yelamarthi,“ IOT based health monitoring for active and

assisted living” , Lecture Notes of the Institute for Computer Sciences · July 2017

[5] Nagaraj Hegde, Edward Sazonov,“ Foot wear based wearable system smart shoe”, Department of Electrical

and Computer Engineering, The University of Alabama; Tuscaloosa, AL 35487, USA; 10 August 2016

 [6] Boon Giin Lee , “Stress Events Detection of Driver by wearable Glove system“ IEEE Sensors Journal ·

November 2016

[7] Geunsik Lim, 30 Aug 2019,Raspberry PI ,<https://github.com/bjpublic/raspberrypi/wiki>

[8] Lokeshc,2018,ElectronicSensors,<https://www.electronicwings.com/sensors-modules/mpu6050-gyroscope-

accelerometer-temperature-sensor-module>

[9] Emmet, 13 mai ,2019, Raspberry Pi Humidity Sensor using the DHT22< https://pimylifeup.com/raspberry-

pi-humidity-sensor-dht22/>

[10]Welcome to Rasbian, n.d, BytemarkHosting <https://www.raspbian.org>

[11] WhatIsPython,n.d,<https://www.python.org/doc/essays/blurb>

[12] Flask Foreword". Archived from the original on 2017-11

17<https://en.wikipedia.org/wiki/Flask_(web_framework)>

[13]World Wide Web Consortium. December 18, 1997. Archived from the original on July 5, 2015. Retrieved

July 6, 2015

[14]"What is CSS?". World Wide Web Consortium. Archived from the original on 2010-11-29. Retrieved 2010-

12-01.

[15] Hack Reactor, October 18, 2018,WhatIsJava, <https://www.hackreactor.com/blog/what-is-javascript-used-

for>

[16] gcuomo (24 October 2013). "JavaScript Everywhere and the Three Amigos (Into the wild BLUE yonder!)".

www.ibm.com.

https://github.com/bjpublic/raspberrypi/wiki
https://www.electronicwings.com/sensors-modules/mpu6050-gyroscope-accelerometer-temperature-sensor-module
https://www.electronicwings.com/sensors-modules/mpu6050-gyroscope-accelerometer-temperature-sensor-module
https://www.raspbian.org/
https://www.python.org/doc/essays/blurb
https://web.archive.org/web/20171117015927/http:/flask.pocoo.org/docs/0.10/foreword
http://flask.pocoo.org/docs/0.10/foreword
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://web.archive.org/web/20150705040855/http:/www.w3.org/TR/REC-html40-971218/conform.html
http://www.w3.org/standards/webdesign/htmlcss#whatcss
https://web.archive.org/web/20101129081921/http:/www.w3.org/standards/webdesign/htmlcss#whatcss
https://www.hackreactor.com/blog/what-is-javascript-used-for
https://www.hackreactor.com/blog/what-is-javascript-used-for
https://www.ibm.com/developerworks/community/blogs/gcuomo/entry/javascript_everywhere_and_the_three_amigos?lang=en
http://www.ibm.com./

